Simulating adiabatic quantum computation with a variational approach
- URL: http://arxiv.org/abs/2403.05147v1
- Date: Fri, 8 Mar 2024 08:31:48 GMT
- Title: Simulating adiabatic quantum computation with a variational approach
- Authors: Giuseppe Carleo, Bela Bauer, Matthias Troyer
- Abstract summary: We present here a variational approach to substantially alleviate this problem in many situations of interest.
We demonstrate that accurate results can be obtained in a variety of problems, ranging from the description of defect generation through a dynamical phase transition in 1D to the complex dynamics of frustrated spin-glass problems both on fully-connected and Chimera graphs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The theoretical analysis of the Adiabatic Quantum Computation protocol
presents several challenges resulting from the difficulty of simulating, with
classical resources, the unitary dynamics of a large quantum device. We present
here a variational approach to substantially alleviate this problem in many
situations of interest. Our approach is based on the time-dependent Variational
Monte Carlo method, in conjunction with a correlated and time-dependent Jastrow
ansatz. We demonstrate that accurate results can be obtained in a variety of
problems, ranging from the description of defect generation through a dynamical
phase transition in 1D to the complex dynamics of frustrated spin-glass
problems both on fully-connected and Chimera graphs.
Related papers
- Adiabatic Bottlenecks in Quantum Annealing and Nonequilibrium Dynamics of Paramagnons [0.0]
Correspondence between long-range interacting quantum spin glasses and optimization problems underpins the physical motivation for adiabatic quantum computing.
In disordered (quantum) spin systems, the focus is on exact methods such as the replica trick that allow the calculation of system quantities in the limit of infinite system and ensemble size.
Here, we apply the nonequilibrium Green-function formalism to the spin coherent-state path integral to obtain the statistical fluctuations and the collective-excitation spectrum.
arXiv Detail & Related papers (2024-03-18T07:59:46Z) - Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation [41.94295877935867]
We introduce a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations.
We use time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations.
The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems.
arXiv Detail & Related papers (2024-03-12T09:37:22Z) - Unraveling long-time quantum dynamics using flow equations [0.0]
We present a new technique capable of simulating the non-equilibrium dynamics of two-dimensional quantum systems.
We show that the method works well in both localized and delocalized phases.
This approach shows that the exploration of intermediate-scale time evolution may be more feasible than is commonly assumed.
arXiv Detail & Related papers (2023-08-24T18:10:16Z) - Dense outputs from quantum simulations [5.295277584890625]
The quantum dense output problem is the process of evaluating time-accumulated observables from time-dependent quantum dynamics.
This problem arises frequently in applications such as quantum control and spectroscopic computation.
We present a range of algorithms designed to operate on both early and fully fault-tolerant quantum platforms.
arXiv Detail & Related papers (2023-07-26T18:16:51Z) - Unbiasing time-dependent Variational Monte Carlo by projected quantum
evolution [44.99833362998488]
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate quantum systems classically.
We prove that the most used scheme, the time-dependent Variational Monte Carlo (tVMC), is affected by a systematic statistical bias.
We show that a different scheme based on the solution of an optimization problem at each time step is free from such problems.
arXiv Detail & Related papers (2023-05-23T17:38:10Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Determination of dynamical quantum phase transitions in strongly
correlated many-body systems using Loschmidt cumulants [0.0]
We use Loschmidt cumulants to determine the critical times of interacting quantum systems after a quench.
Our work demonstrates that Loschmidt cumulants are a powerful tool to unravel the far-from-equilibrium dynamics of strongly correlated many-body systems.
arXiv Detail & Related papers (2020-11-27T09:03:47Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum computation of thermal averages in the presence of a sign
problem [45.82374977939355]
We illustrate the application of Quantum Computing techniques to the investigation of the thermodynamical properties of a simple system.
We show how quantum algorithms completely solve the problem, and discuss how this can apply to more complex systems of physical interest.
arXiv Detail & Related papers (2020-01-15T14:01:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.