論文の概要: LanePtrNet: Revisiting Lane Detection as Point Voting and Grouping on
Curves
- arxiv url: http://arxiv.org/abs/2403.05155v1
- Date: Fri, 8 Mar 2024 08:45:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 20:28:27.239772
- Title: LanePtrNet: Revisiting Lane Detection as Point Voting and Grouping on
Curves
- Title(参考訳): laneptrnet: ポイント投票としてのレーン検出の再検討と曲線のグルーピング
- Authors: Jiayan Cao, Xueyu Zhu, Cheng Qian
- Abstract要約: 車線検出は、自動運転の分野において重要な役割を果たす。
本稿では,順序付き集合上での点投票とグループ化のプロセスとしてレーン検出を扱う新しいアプローチであるLanePtrNetを提案する。
提案手法の有効性を検証するための総合的な実験を行い,その性能を実証した。
- 参考スコア(独自算出の注目度): 8.037214110171123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lane detection plays a critical role in the field of autonomous driving.
Prevailing methods generally adopt basic concepts (anchors, key points, etc.)
from object detection and segmentation tasks, while these approaches require
manual adjustments for curved objects, involve exhaustive searches on
predefined anchors, require complex post-processing steps, and may lack
flexibility when applied to real-world scenarios.In this paper, we propose a
novel approach, LanePtrNet, which treats lane detection as a process of point
voting and grouping on ordered sets: Our method takes backbone features as
input and predicts a curve-aware centerness, which represents each lane as a
point and assigns the most probable center point to it. A novel point sampling
method is proposed to generate a set of candidate points based on the votes
received. By leveraging features from local neighborhoods, and cross-instance
attention score, we design a grouping module that further performs lane-wise
clustering between neighboring and seeding points. Furthermore, our method can
accommodate a point-based framework, (PointNet++ series, etc.) as an
alternative to the backbone. This flexibility enables effortless extension to
3D lane detection tasks. We conduct comprehensive experiments to validate the
effectiveness of our proposed approach, demonstrating its superior performance.
- Abstract(参考訳): 車線検出は自動運転の分野で重要な役割を果たしている。
Prevailing methods generally adopt basic concepts (anchors, key points, etc.) from object detection and segmentation tasks, while these approaches require manual adjustments for curved objects, involve exhaustive searches on predefined anchors, require complex post-processing steps, and may lack flexibility when applied to real-world scenarios.In this paper, we propose a novel approach, LanePtrNet, which treats lane detection as a process of point voting and grouping on ordered sets: Our method takes backbone features as input and predicts a curve-aware centerness, which represents each lane as a point and assigns the most probable center point to it.
得られた票に基づいて候補点の集合を生成するための新しい点サンプリング法を提案する。
局所的近傍の特徴と横断的注意スコアを利用することで,隣接点とシード点間のレーン毎のクラスタリングをさらに行うグループ化モジュールをデザインする。
さらに、この方法はバックボーンの代替としてポイントベースのフレームワーク(pointnet++シリーズなど)を適合させることができる。
この柔軟性により、3Dレーン検出タスクへの無駄な拡張が可能になる。
提案手法の有効性を検証するため,包括的な実験を行い,その優れた性能を示す。
関連論文リスト
- Lidar Panoptic Segmentation and Tracking without Bells and Whistles [48.078270195629415]
ライダーセグメンテーションと追跡のための検出中心ネットワークを提案する。
私たちのネットワークのコアコンポーネントの1つは、オブジェクトインスタンス検出ブランチです。
提案手法を複数の3D/4D LPSベンチマークで評価し,我々のモデルがオープンソースモデル間で新たな最先端性を確立することを確認した。
論文 参考訳(メタデータ) (2023-10-19T04:44:43Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
本稿では,局所レーングラフの推定精度を向上させるために,アーキテクチャと損失の定式化を提案する。
提案手法は,中心線をクラスタ中心とすることで,対象を中心線に割り当てることを学ぶ。
提案手法は既存の3次元オブジェクト検出手法の出力を用いて,大幅な性能向上を実現することができることを示す。
論文 参考訳(メタデータ) (2023-07-20T15:21:28Z) - From Keypoints to Object Landmarks via Self-Training Correspondence: A
novel approach to Unsupervised Landmark Discovery [37.78933209094847]
本稿ではオブジェクトランドマーク検出器の教師なし学習のための新しいパラダイムを提案する。
我々はLS3D、BBCPose、Human3.6M、PennActionなどの難解なデータセットに対して本手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-05-31T15:44:29Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
SASA(Semantics-Augmented Set Abstraction)と呼ばれる新しい集合抽象化手法を提案する。
そこで本研究では, 推定点前景スコアに基づいて, より重要な前景点の維持を支援するセマンティックス誘導点サンプリングアルゴリズムを提案する。
実際には、SASAは、前景オブジェクトに関連する貴重な点を識別し、ポイントベースの3D検出のための特徴学習を改善するのに有効である。
論文 参考訳(メタデータ) (2022-01-06T08:54:47Z) - Beyond Farthest Point Sampling in Point-Wise Analysis [52.218037492342546]
本稿では,ポイントワイズ分析タスクのための新しいデータ駆動型サンプル学習手法を提案する。
我々はサンプルと下流のアプリケーションを共同で学習する。
実験により, 従来のベースライン法に比べて, サンプルとタスクの同時学習が顕著に改善することが示された。
論文 参考訳(メタデータ) (2021-07-09T08:08:44Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
本稿では,ポイントレベルのアノテーションのみを用いて訓練された典型的なオブジェクト検出を可能にする,新たな自己学習手法を提案する。
トレーニング中、利用可能なポイントアノテーションを使用して、オブジェクトの中心点の推定を監督する。
実験の結果,本手法は検出タスクとカウントタスクの両方において,最先端のポイント管理手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-25T02:14:42Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
中心点から抽出された画像の特徴は、離れたキーポイントや境界ボックスの境界を予測するための限られた情報を含んでいると論じる。
推論を容易にするために,より有利な位置に配置された点集合からの回帰を行うことを提案する。
我々は、オブジェクト検出、インスタンス分割、人間のポーズ推定にPoint-Set Anchorsと呼ばれるこのフレームワークを適用した。
論文 参考訳(メタデータ) (2020-07-06T15:59:56Z) - Key Points Estimation and Point Instance Segmentation Approach for Lane
Detection [65.37887088194022]
本稿では,PINet (Point Instance Network) と呼ばれるトラヒックライン検出手法を提案する。
PINetには、同時にトレーニングされる複数のスタックされた時間ガラスネットワークが含まれている。
PINetはTuSimpleとCulaneのデータセットで競合精度と偽陽性を達成する。
論文 参考訳(メタデータ) (2020-02-16T15:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。