論文の概要: Synthetic Privileged Information Enhances Medical Image Representation
Learning
- arxiv url: http://arxiv.org/abs/2403.05220v1
- Date: Fri, 8 Mar 2024 11:18:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 20:06:51.624550
- Title: Synthetic Privileged Information Enhances Medical Image Representation
Learning
- Title(参考訳): 医用画像表現学習を支援する合成プライヴィゲード情報
- Authors: Lucas Farndale, Chris Walsh, Robert Insall, Ke Yuan
- Abstract要約: マルチモーダルな自己教師型表現学習は、医用画像解析において非常に効果的な方法であることが一貫して証明されている。
本研究では,ペア化された情報を合成することによって,表現学習を大幅に改善できることを実証する。
- 参考スコア(独自算出の注目度): 3.2157163136267948
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Multimodal self-supervised representation learning has consistently proven to
be a highly effective method in medical image analysis, offering strong task
performance and producing biologically informed insights. However, these
methods heavily rely on large, paired datasets, which is prohibitive for their
use in scenarios where paired data does not exist, or there is only a small
amount available. In contrast, image generation methods can work well on very
small datasets, and can find mappings between unpaired datasets, meaning an
effectively unlimited amount of paired synthetic data can be generated. In this
work, we demonstrate that representation learning can be significantly improved
by synthetically generating paired information, both compared to training on
either single-modality (up to 4.4x error reduction) or authentic multi-modal
paired datasets (up to 5.6x error reduction).
- Abstract(参考訳): マルチモーダル自己教師付き表現学習は、一貫して医療画像解析において非常に効果的な方法であることが証明され、強力なタスクパフォーマンスを提供し、生物学的にインフォームドされた洞察を生み出す。
しかし、これらのメソッドは、ペアデータが存在しないか、あるいは少量しか利用できないシナリオでの使用を禁止する、大規模なペアデータデータセットに大きく依存している。
対照的に、画像生成手法は非常に小さなデータセットでうまく機能し、ペアのないデータセット間のマッピングを見つけることができ、事実上無制限にペア化された合成データを生成することができる。
本研究では,単一モダリティ(最大4.4倍の誤差削減)と真正のマルチモーダルペアデータセット(最大5.6倍の誤差削減)のどちらにおいても,合成的にペア情報を生成することで表現学習を著しく改善できることを実証する。
関連論文リスト
- Dataset Distillation in Medical Imaging: A Feasibility Study [16.44272552893816]
医療画像解析分野におけるデータの共有は、まだ未承認のままである。
可能な解決策の1つは、同様のモデルパフォーマンスを保ちながら、データセット全体の転送を避けることである。
コンピュータ科学におけるデータ蒸留の最近の進歩は、医療データを効率的に共有する有望な可能性を示している。
論文 参考訳(メタデータ) (2024-07-19T15:59:04Z) - Training on Synthetic Data Beats Real Data in Multimodal Relation
Extraction [8.038421100401132]
本稿では,テキストや画像などの一意的なデータのみをトレーニング中に利用できるような,新たな問題設定について考察する。
我々は,実マルチモーダルテストデータ上で良好に動作する合成データから,マルチモーダル関係を訓練することを目指している。
完全合成画像で訓練された最良のモデルは、F1の3.76%のマージンで、実際のマルチモーダルデータで訓練された最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-05T08:11:34Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
本稿では、画像キャプションモデルの一般化を改善するための、新しいデータ効率半教師付きフレームワークを提案する。
提案手法は,キャプタにペアデータから学習し,段階的に未ペアデータの関連付けを行うよう訓練する。
1)画像ベースと(2)高密度領域ベースキャプションデータセットの両方を総合的かつ包括的な実験結果とし,それに続いて,少ないペアリングデータセットの包括的分析を行った。
論文 参考訳(メタデータ) (2023-01-26T15:25:43Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
コントラストデータペアを生成するための新しい位置コントラスト学習フレームワークを提案する。
提案手法は,半教師付き設定と移動学習の両方において既存の手法と比較して,セグメンテーション性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-06-16T22:15:28Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
本稿では,実解剖情報を活用し,腫瘍の現実的な画像ラベル対を生成する新しい生成法を提案する。
解剖学的画像とラベルのためのデュアルパス生成器を構築し, 独立して事前学習されたセグメンタによって制約された, サイクル一貫性のある設定で学習する。
生成した画像は,既存の手法に比べて定量的に顕著に改善された。
論文 参考訳(メタデータ) (2021-04-22T11:18:17Z) - Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information [55.866673486753115]
プライバシーとセキュリティを守るために拡張可能で弾力性のある学習フレームワークを提案します。
提案するフレームワークは分散Asynchronized Discriminator Generative Adrial Networks (AsynDGAN) である。
論文 参考訳(メタデータ) (2020-12-15T20:41:24Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Multimodal Prototypical Networks for Few-shot Learning [20.100480009813953]
クロスモーダルな機能生成フレームワークは、数ショットのシナリオにおいて、人口密度の低い埋め込みスペースを強化するために使用される。
このような場合、近隣の分類は実現可能なアプローチであり、最先端のシングルモーダルおよびマルチモーダルの複数ショット学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-17T19:32:59Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。