Load Balancing For High Performance Computing Using Quantum Annealing
- URL: http://arxiv.org/abs/2403.05278v1
- Date: Fri, 8 Mar 2024 12:58:12 GMT
- Title: Load Balancing For High Performance Computing Using Quantum Annealing
- Authors: Omer Rathore, Alastair Basden, Nicholas Chancellor and Halim
Kusumaatmaja
- Abstract summary: We investigate the application of quantum annealing to load balance two paradigmatic algorithms in high performance computing.
In a grid based context, quantum annealing is found to outperform classical methods such as the round robin protocol but lacks a decisive advantage over more advanced methods.
This signals a noteworthy advancement in solution quality which can have a large impact on effective CPU usage.
- Score: 0.6144680854063939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of exascale computing, effective load balancing in massively
parallel software applications is critically important for leveraging the full
potential of high performance computing systems. Load balancing is the
distribution of computational work between available processors. Here, we
investigate the application of quantum annealing to load balance two
paradigmatic algorithms in high performance computing. Namely, adaptive mesh
refinement and smoothed particle hydrodynamics are chosen as representative
grid and off-grid target applications. While the methodology for obtaining real
simulation data to partition is application specific, the proposed balancing
protocol itself remains completely general. In a grid based context, quantum
annealing is found to outperform classical methods such as the round robin
protocol but lacks a decisive advantage over more advanced methods such as
steepest descent or simulated annealing despite remaining competitive. The
primary obstacle to scalability is found to be limited coupling on current
quantum annealing hardware. However, for the more complex particle formulation,
approached as a multi-objective optimization, quantum annealing solutions are
demonstrably Pareto dominant to state of the art classical methods across both
objectives. This signals a noteworthy advancement in solution quality which can
have a large impact on effective CPU usage.
Related papers
- Connecting the Hamiltonian structure to the QAOA performance and energy landscape [0.0]
Quantum Alternating Operator Ansatz (QAOA) is effective for solving Quadratic Unconstrained Binary Optimization problems.
This study emphasizes the algorithm's robustness and potential for optimization tasks on near-term quantum devices.
arXiv Detail & Related papers (2024-07-05T11:32:46Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Multi-objective Quantum Annealing approach for solving flexible job shop
scheduling in manufacturing [0.0]
This paper introduces Quantum Annealing-based solving algorithm (QASA) to address Flexible Job Shop Scheduling problem.
Experiments on benchmark problems show QASA, combining tabu search, simulated annealing, and Quantum Annealing, outperforms a classical solving algorithm (CSA) in solution quality.
arXiv Detail & Related papers (2023-11-16T07:45:57Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Scalable Quantum Computation of Highly Excited Eigenstates with Spectral
Transforms [0.76146285961466]
We use the HHL algorithm to prepare excited interior eigenstates of physical Hamiltonians in a variational and targeted manner.
This is enabled by the efficient computation of the expectation values of inverse Hamiltonians on quantum computers.
We detail implementations of this scheme for both fault-tolerant and near-term quantum computers.
arXiv Detail & Related papers (2023-02-13T19:01:02Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.