Model-Based Counterfactual Synthesizer for Interpretation
- URL: http://arxiv.org/abs/2106.08971v1
- Date: Wed, 16 Jun 2021 17:09:57 GMT
- Title: Model-Based Counterfactual Synthesizer for Interpretation
- Authors: Fan Yang, Sahan Suresh Alva, Jiahao Chen, Xia Hu
- Abstract summary: We propose a Model-based Counterfactual Synthesizer (MCS) framework for interpreting machine learning models.
We first analyze the model-based counterfactual process and construct a base synthesizer using a conditional generative adversarial net (CGAN)
To better approximate the counterfactual universe for those rare queries, we novelly employ the umbrella sampling technique to conduct the MCS framework training.
- Score: 40.01787107375103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactuals, serving as one of the emerging type of model
interpretations, have recently received attention from both researchers and
practitioners. Counterfactual explanations formalize the exploration of
``what-if'' scenarios, and are an instance of example-based reasoning using a
set of hypothetical data samples. Counterfactuals essentially show how the
model decision alters with input perturbations. Existing methods for generating
counterfactuals are mainly algorithm-based, which are time-inefficient and
assume the same counterfactual universe for different queries. To address these
limitations, we propose a Model-based Counterfactual Synthesizer (MCS)
framework for interpreting machine learning models. We first analyze the
model-based counterfactual process and construct a base synthesizer using a
conditional generative adversarial net (CGAN). To better approximate the
counterfactual universe for those rare queries, we novelly employ the umbrella
sampling technique to conduct the MCS framework training. Besides, we also
enhance the MCS framework by incorporating the causal dependence among
attributes with model inductive bias, and validate its design correctness from
the causality identification perspective. Experimental results on several
datasets demonstrate the effectiveness as well as efficiency of our proposed
MCS framework, and verify the advantages compared with other alternatives.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - On the Reasoning Capacity of AI Models and How to Quantify It [0.0]
Large Language Models (LLMs) have intensified the debate surrounding the fundamental nature of their reasoning capabilities.
While achieving high performance on benchmarks such as GPQA and MMLU, these models exhibit limitations in more complex reasoning tasks.
We propose a novel phenomenological approach that goes beyond traditional accuracy metrics to probe the underlying mechanisms of model behavior.
arXiv Detail & Related papers (2025-01-23T16:58:18Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
arXiv Detail & Related papers (2024-03-08T14:45:18Z) - SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling [3.988614978933934]
Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions using observational data.
Path models, Structural Equation Models (SEMs) and Directed Acyclic Graphs (DAGs) provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon.
We propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles.
arXiv Detail & Related papers (2023-08-08T16:04:42Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.