論文の概要: Exploring Heterogeneity and Uncertainty for Graph-based Cognitive Diagnosis Models in Intelligent Education
- arxiv url: http://arxiv.org/abs/2403.05559v2
- Date: Wed, 22 Jan 2025 07:20:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:52:51.160067
- Title: Exploring Heterogeneity and Uncertainty for Graph-based Cognitive Diagnosis Models in Intelligent Education
- Title(参考訳): 知的教育におけるグラフに基づく認知診断モデルの不均一性と不確かさの探索
- Authors: Pengyang Shao, Yonghui Yang, Chen Gao, Lei Chen, Kun Zhang, Chenyi Zhuang, Le Wu, Yong Li, Meng Wang,
- Abstract要約: Informative Semantic-Aware Graph-based Cognitive Diagnosis Model (ISG-CD)を提案する。
ISG-CDは、CDにおける不均一グラフの活用と不確実なエッジの効果の最小化に焦点を当てている。
実世界の3つのデータセットの実験は、ISG-CDの有効性を実証した。
- 参考スコア(独自算出の注目度): 41.05510851340416
- License:
- Abstract: Graph-based Cognitive Diagnosis (CD) has attracted much research interest due to its strong ability on inferring students' proficiency levels on knowledge concepts. While graph-based CD models have demonstrated remarkable performance, we contend that they still cannot achieve optimal performance due to the neglect of edge heterogeneity and uncertainty. Edges involve both correct and incorrect response logs, indicating heterogeneity. Meanwhile, a response log can have uncertain semantic meanings, e.g., a correct log can indicate true mastery or fortunate guessing, and a wrong log can indicate a lack of understanding or a careless mistake. In this paper, we propose an Informative Semantic-aware Graph-based Cognitive Diagnosis model (ISG-CD), which focuses on how to utilize the heterogeneous graph in CD and minimize effects of uncertain edges. Specifically, to explore heterogeneity, we propose a semantic-aware graph neural networks based CD model. To minimize effects of edge uncertainty, we propose an Informative Edge Differentiation layer from an information bottleneck perspective, which suggests keeping a minimal yet sufficient reliable graph for CD in an unsupervised way. We formulate this process as maximizing mutual information between the reliable graph and response logs, while minimizing mutual information between the reliable graph and the original graph. After that, we prove that mutual information maximization can be theoretically converted to the classic binary cross entropy loss function, while minimizing mutual information can be realized by the Hilbert-Schmidt Independence Criterion. Finally, we adopt an alternating training strategy for optimizing learnable parameters of both the semantic-aware graph neural networks based CD model and the edge differentiation layer. Extensive experiments on three real-world datasets have demonstrated the effectiveness of ISG-CD.
- Abstract(参考訳): グラフに基づく認知診断(CD)は、学生の知識概念の習熟度を推定する能力が強いことから、多くの研究の関心を集めている。
グラフベースのCDモデルは目覚ましい性能を示したが、エッジの不均一性や不確実性の欠如により、依然として最適な性能を達成できないと我々は主張する。
エッジには正しい応答ログと誤った応答ログの両方が含まれており、不均一性を示している。
一方、応答ログは不確実な意味を持ち、例えば正しいログは真の熟達または幸運な推測を示すことができ、間違ったログは理解の欠如や不注意な間違いを示すことができる。
Informative Semantic-aware Graph-based Cognitive Recognition Model (ISG-CD) を提案する。
具体的には、異種性を探究するために、意味認識型グラフニューラルネットワークに基づくCDモデルを提案する。
エッジ不確実性の影響を最小限に抑えるため,情報ボトルネックの観点からのInformative Edge差分層を提案する。
本稿では,信頼性グラフと応答ログ間の相互情報の最大化として,信頼性グラフと元のグラフ間の相互情報の最小化として,このプロセスを定式化する。
その後、Hilbert-Schmidt Independence Criterionにより、相互情報の最大化を古典的二項交叉エントロピー損失関数に理論的に変換できる一方で、相互情報の最小化は実現可能であることを証明した。
最後に、意味認識型グラフニューラルネットワークに基づくCDモデルとエッジ微分層の両方の学習可能なパラメータを最適化するための交互トレーニング戦略を採用する。
実世界の3つのデータセットに対する大規模な実験は、ISG-CDの有効性を実証した。
関連論文リスト
- Rethinking Dimensional Rationale in Graph Contrastive Learning from Causal Perspective [15.162584339143239]
グラフコントラスト学習(Graph contrastive learning)は、グラフの様々な摂動から不変情報を捉えるのに優れた一般的な学習パラダイムである。
最近の研究は、グラフから構造的理性を探究することに集中し、不変情報の識別可能性を高める。
本稿では,学習可能な次元理性獲得ネットワークと冗長性低減制約を導入した,次元理性対応グラフコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2023-12-16T10:05:18Z) - Implicit Graph Neural Diffusion Networks: Convergence, Generalization,
and Over-Smoothing [7.984586585987328]
Inlicit Graph Neural Networks (GNN)は、グラフ学習問題に対処する上で大きな成功を収めた。
パラメータ化グラフラプラシアン演算子に基づく暗黙グラフ拡散層を設計するための幾何学的枠組みを提案する。
ディリクレエネルギー最小化問題の固定点方程式として, 暗黙のGNN層がどう見えるかを示す。
論文 参考訳(メタデータ) (2023-08-07T05:22:33Z) - Interpretable Sparsification of Brain Graphs: Better Practices and
Effective Designs for Graph Neural Networks [15.101250958437038]
密度の高い脳グラフは、高い実行時間とメモリ使用量、限定的な解釈可能性を含む計算上の課題を生じさせる。
55.0%のエッジでグラフ分類性能を最大5.1%向上させる新しいモデルであるInterpretable Graph Sparsificationを提案する。
論文 参考訳(メタデータ) (2023-06-26T01:37:10Z) - Compressing Deep Graph Neural Networks via Adversarial Knowledge
Distillation [41.00398052556643]
本稿では,GraphAKD というグラフモデルのための新しい知識蒸留フレームワークを提案する。
識別器は教師の知識と学生が継承するものを区別し、学生GNNはジェネレータとして働き、識別器を騙す。
その結果、GraphAKDは複雑な教師GNNからコンパクトな学生GNNに正確な知識を伝達できることがわかった。
論文 参考訳(メタデータ) (2022-05-24T00:04:43Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
与えられたグラフ信号の集合からグラフ構造を推測する問題を検討する。
従来のグラフ学習モデルは、この分布の不確実性を考慮していない。
論文 参考訳(メタデータ) (2021-05-12T06:47:34Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。