論文の概要: Individualized Mapping of Aberrant Cortical Thickness via Stochastic Cortical Self-Reconstruction
- arxiv url: http://arxiv.org/abs/2403.06837v2
- Date: Tue, 23 Sep 2025 15:57:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.345881
- Title: Individualized Mapping of Aberrant Cortical Thickness via Stochastic Cortical Self-Reconstruction
- Title(参考訳): 確率的皮質自己再構成による異常皮質厚の個別マッピング
- Authors: Christian Wachinger, Dennis Hedderich, Melissa Thalhammer, Fabian Bongratz,
- Abstract要約: 皮質自己再構成(SCSR)は、微妙な厚さのずれを検出することができる高度に個別化された皮質再構成を生成する。
SCSRは再建誤りを著しく低減し, 既往の方法よりも優れた疾患判別を可能にする萎縮パターンを同定した。
- 参考スコア(独自算出の注目度): 5.7864523838262025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding individual differences in cortical structure is key to advancing diagnostics in neurology and psychiatry. Reference models aid in detecting aberrant cortical thickness, yet site-specific biases limit their direct application to unseen data, and region-wise averages prevent the detection of localized cortical changes. To address these limitations, we developed the Stochastic Cortical Self-Reconstruction (SCSR), a novel method that leverages deep learning to reconstruct cortical thickness maps at the vertex level without needing additional subject information. Trained on over 25,000 healthy individuals, SCSR generates highly individualized cortical reconstructions that can detect subtle thickness deviations. Our evaluations on independent test sets demonstrated that SCSR achieved significantly lower reconstruction errors and identified atrophy patterns that enabled better disease discrimination than established methods. It also hints at cortical thinning in preterm infants that went undetected by existing models, showcasing its versatility. Finally, SCSR excelled in mapping highly resolved cortical deviations of dementia patients from clinical data, highlighting its potential for supporting diagnosis in clinical practice.
- Abstract(参考訳): 個々の皮質構造の違いを理解することは、神経学や精神医学における診断の進歩の鍵となる。
基準モデルは、異常な皮質の厚さを検出するのに役立つが、サイト固有のバイアスは、その直接的な適用を目に見えないデータに制限し、地域平均は局所的な皮質の変化を検出するのを妨げている。
これらの制約に対処するため,深層学習を利用して頂点レベルでの皮質厚みマップを再構築する手法であるStochastic Cortical Self-Reconstruction (SCSR)を開発した。
SCSRは25,000人以上の健康な個人を訓練し、微妙な厚さのずれを検知できる高度に個別化された皮質再構築を生成する。
独立したテストセットを用いた評価の結果,SCSRは再建誤りを有意に低減し,既往の方法よりも優れた疾患判別を可能にする萎縮パターンを同定した。
また、未熟児の皮質の薄化は、既存のモデルによって検出されず、その汎用性を示していることを示唆している。
最後に、SCSRは、認知症患者の高度に解決された皮質偏位を臨床データからマッピングし、臨床における診断支援の可能性を強調した。
関連論文リスト
- Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease [0.0]
我々は、新しいアーキテクチャをトレーニングして潜伏空間の分布を構築し、そこからサンプルを抽出し、将来的な解剖学的変化の予測を生成する。
いくつかの代替手法と比較することにより,より高解像度でより個別化された画像を生成することを示す。
論文 参考訳(メタデータ) (2024-08-04T13:09:06Z) - Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models [13.970483987621135]
本研究では、健康な画像に対して自己教師付きコントラストエンコーダを訓練することにより、再建品質を改善するための教師なしフレームワークを提案する。
これらの特徴は、拡散モデルを用いて、与えられた画像の健全な外観を再構成し、画素ワイド比較による解釈可能な異常な局所化を可能にする。
論文 参考訳(メタデータ) (2024-06-02T15:19:07Z) - Multi-class point cloud completion networks for 3D cardiac anatomy
reconstruction from cine magnetic resonance images [4.1448595037512925]
マルチクラスの心臓解剖学的メッシュを再構築できる新しい完全自動表面再構成パイプラインを提案する。
その鍵となるコンポーネントは、マルチクラスポイントクラウド補完ネットワーク(PCCN)である。
論文 参考訳(メタデータ) (2023-07-17T14:52:52Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Reconstructing the somatotopic organization of the corticospinal tract
remains a challenge for modern tractography methods [55.07297021627281]
CST(Corticospinal tract)は、人間の脳において、身体の自発的な動きを制御できる重要なホワイトマター線維である。
拡散MRIトラクトグラフィーは、ヒトの健康におけるCST経路の解剖学的および変動性の研究を可能にする唯一の方法である。
論文 参考訳(メタデータ) (2023-06-09T02:05:40Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
本稿では,教師なし特徴抽出器として生成拡散オートエンコーダモデルを訓練するための新しい手法を提案する。
フラクチャーグレーディングを連続回帰としてモデル化し, フラクチャーのスムーズな進行を反映した。
重要なことに,本手法の創成特性は,与えられた脊椎の様々な段階を可視化し,自動グルーピングに寄与する特徴を解釈し,洞察することを可能にする。
論文 参考訳(メタデータ) (2023-03-21T17:16:01Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI
Reconstruction [14.754843942604472]
非カルテシアンMRIの再生を高速化するための完全自己教師型アプローチを提案する。
トレーニングでは、アンダーサンプリングされたデータは、非結合のk空間ドメイン分割に分割される。
画像レベルの自己スーパービジョンでは、元のアンサンプデータから得られる外観整合性を強制する。
論文 参考訳(メタデータ) (2023-02-18T06:11:49Z) - Successive Subspace Learning for Cardiac Disease Classification with
Two-phase Deformation Fields from Cine MRI [36.044984400761535]
本研究は,CVD分類のための軽量な逐次サブスペース学習フレームワークを提案する。
解釈可能なフィードフォワードデザインに基づいており、心房と組み合わせている。
3D CNNベースのアプローチと比較して、我々のフレームワークは140$times$より少ないパラメータで優れた分類性能を実現する。
論文 参考訳(メタデータ) (2023-01-21T15:00:59Z) - ICAM-reg: Interpretable Classification and Regression with Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans [3.589107822343127]
本研究では,生成的深層学習における最近の進歩を活かし,同時分類法,回帰法,特徴帰属法を開発した。
Alzheimer's Disease Neuroimaging InitiativeコホートにおけるMini-Mental State examination (MMSE)認知テストスコア予測のタスクについて検証した。
本稿では,生成したfaマップを用いて異常予測を説明し,回帰加群を組み込むことで潜在空間の不連続性を改善することを示す。
論文 参考訳(メタデータ) (2021-03-03T17:55:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。