論文の概要: Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models
- arxiv url: http://arxiv.org/abs/2406.00772v3
- Date: Tue, 01 Jul 2025 08:57:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-02 15:54:39.91832
- Title: Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models
- Title(参考訳): 条件拡散モデルを用いた脳MRIにおける異常検出のための教師なしコントラスト解析
- Authors: Cristiano Patrício, Carlo Alberto Barbano, Attilio Fiandrotti, Riccardo Renzulli, Marco Grangetto, Luis F. Teixeira, João C. Neves,
- Abstract要約: 本研究では、健康な画像に対して自己教師付きコントラストエンコーダを訓練することにより、再建品質を改善するための教師なしフレームワークを提案する。
これらの特徴は、拡散モデルを用いて、与えられた画像の健全な外観を再構成し、画素ワイド比較による解釈可能な異常な局所化を可能にする。
- 参考スコア(独自算出の注目度): 13.970483987621135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive Analysis (CA) detects anomalies by contrasting patterns unique to a target group (e.g., unhealthy subjects) from those in a background group (e.g., healthy subjects). In the context of brain MRIs, existing CA approaches rely on supervised contrastive learning or variational autoencoders (VAEs) using both healthy and unhealthy data, but such reliance on target samples is challenging in clinical settings. Unsupervised Anomaly Detection (UAD) offers an alternative by learning a reference representation of healthy anatomy without the need for target samples. Deviations from this reference distribution can indicate potential anomalies. In this context, diffusion models have been increasingly adopted in UAD due to their superior performance in image generation compared to VAEs. Nonetheless, precisely reconstructing the anatomy of the brain remains a challenge. In this work, we propose an unsupervised framework to improve the reconstruction quality by training a self-supervised contrastive encoder on healthy images to extract meaningful anatomical features. These features are used to condition a diffusion model to reconstruct the healthy appearance of a given image, enabling interpretable anomaly localization via pixel-wise comparison. We validate our approach through a proof-of-concept on a facial image dataset and further demonstrate its effectiveness on four brain MRI datasets, achieving state-of-the-art anomaly localization performance on the NOVA benchmark.
- Abstract(参考訳): コントラスト分析(CA)は、対象群(例えば、不健康な被験者)と背景群(例えば、健康な被験者)とに特有のパターンを対比することにより異常を検出する。
脳MRIの文脈では、既存のCAアプローチは、健康データと不健康データの両方を用いて、教師付きコントラスト学習または変分オートエンコーダ(VAE)に依存している。
Unsupervised Anomaly Detection (UAD) は、ターゲットサンプルを必要とせずに、健康な解剖の参照表現を学習することで代替手段を提供する。
この基準分布からの逸脱は潜在的な異常を示す可能性がある。
この文脈では、VAEと比較して画像生成の性能が優れているため、UDAでは拡散モデルがますます採用されている。
それでも、脳の解剖を正確に再構築することは依然として困難である。
本研究では,自己教師型コントラストエンコーダを健康な画像上で訓練し,意味のある解剖学的特徴を抽出することにより,再建品質を向上させるための教師なしフレームワークを提案する。
これらの特徴は、拡散モデルを用いて、与えられた画像の健全な外観を再構成し、画素ワイド比較による解釈可能な異常な局所化を可能にする。
顔画像データセットに対する概念実証を通じてアプローチを検証するとともに、4つの脳MRIデータセットでその効果を実証し、NOVAベンチマークで最先端の異常局所化性能を達成した。
関連論文リスト
- CADD: Context aware disease deviations via restoration of brain images using normative conditional diffusion models [1.3462324726960995]
本稿では、3次元画像における規範的モデリングのための最初の条件拡散モデルCADDを提案する。
本稿では,異常除去と主観的特徴の保持を両立させる新しい推論塗装戦略を提案する。
論文 参考訳(メタデータ) (2025-08-05T15:59:19Z) - Conditional diffusion models for guided anomaly detection in brain images using fluid-driven anomaly randomization [4.570902159763305]
脳MRIにおける異常検出と正常画像再構成のための新しい条件拡散モデルフレームワークを提案する。
我々の弱教師付きアプローチは、合成された擬似病理像をモデリングプロセスに統合し、健康な画像の再構築をより良く指導する。
我々は,ATLASデータセットから合成異常データセットと実病態の両方を用いて,本モデルの病理診断能力を評価する。
論文 参考訳(メタデータ) (2025-06-11T23:27:00Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
我々は,脳MRIと胸部X線による3つの時系列的ベンチマークデータセットを用いて,対物画像生成法について検討した。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Dynamic Entity-Masked Graph Diffusion Model for histopathological image Representation Learning [25.197342542821843]
動的Entity-Masked Graph Diffusion Modelによる自己管理型病理画像表現学習法であるH-MGDMを紹介する。
具体的には,予備訓練において,相補的な部分グラフを潜時拡散条件として,自己教師対象として用いることを提案する。
論文 参考訳(メタデータ) (2024-12-13T10:18:36Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
脳画像における教師なし異常検出のためのMasked Autoencoder-enhanced Diffusion Model (MAEDiff)を提案する。
MAEDiffは、階層的なパッチ分割を含む。上層パッチを重畳して健全なイメージを生成し、サブレベルパッチで動作するマスク付きオートエンコーダに基づくメカニズムを実装し、未通知領域の状態を高める。
論文 参考訳(メタデータ) (2024-01-19T08:54:54Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) は、正常なトレーニング分布から異常を外れ値として識別することを目的としている。
生成モデルは、与えられた入力画像に対する健康な脳解剖の再構築を学ぶために使用される。
本稿では,入力画像の潜在表現から得られた付加情報を用いて拡散モデルの復調過程を条件付けることを提案する。
論文 参考訳(メタデータ) (2023-12-07T11:03:42Z) - Latent Diffusion Model for Medical Image Standardization and Enhancement [11.295078152769559]
DiffusionCTは、異なる非標準分布を標準化形式に変換するスコアベースのDDPMモデルである。
このアーキテクチャは、ボトルネック位置に統合されたDDPMモデルにより強化されたU-Netベースのエンコーダデコーダを含む。
DiffusionCTによる画像の標準化の顕著な改善が示唆された。
論文 参考訳(メタデータ) (2023-10-08T17:11:14Z) - DiffAug: Enhance Unsupervised Contrastive Learning with Domain-Knowledge-Free Diffusion-based Data Augmentation [48.25619775814776]
本稿では,拡散モードに基づく正データ生成を用いた新しい教師なしコントラスト学習手法であるDiffAugを提案する。
DiffAugはセマンティックエンコーダと条件拡散モデルから構成されており、条件拡散モデルはセマンティックエンコーダに条件付された新しい正のサンプルを生成する。
実験的評価により、DiffAugは、DNA配列、視覚、および生体機能データセットのハンドデザインおよびSOTAモデルに基づく拡張手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-10T13:28:46Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
テキストと画像の拡散モデルは、画像認識の恩恵を受ける大きな可能性を示している。
有望ではあるが、拡散生成画像の教師なし学習に特化した調査は不十分である。
上記フリーアテンションマスクをフル活用することで、カスタマイズされたソリューションを導入する。
論文 参考訳(メタデータ) (2023-08-13T10:07:46Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - VAESim: A probabilistic approach for self-supervised prototype discovery [0.23624125155742057]
条件付き変分オートエンコーダに基づく画像階層化アーキテクチャを提案する。
我々は、連続した潜伏空間を用いて障害の連続を表現し、訓練中にクラスターを見つけ、画像/患者の成層に使用することができる。
本手法は,標準VAEに対して,分類タスクで測定されたkNN精度において,ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-25T17:55:31Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
脳画像における異常検出とセグメント分割のための拡散モデルに基づく手法を提案する。
拡散モデルは,2次元CTおよびMRIデータを用いた一連の実験において,自己回帰的アプローチと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-06-07T17:30:43Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
UAD(Unsupervised Anomaly Detection)は、通常の(すなわち健康的な)画像でのみ1クラスの分類器を学習する。
異常検出のための制約コントラスト分布学習(Constrained Contrastive Distribution Learning for Anomaly Detection, CCD)を提案する。
本手法は,3種類の大腸内視鏡および底部検診データセットにおいて,最先端のUADアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-03-05T01:56:58Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。