論文の概要: A cascaded deep network for automated tumor detection and segmentation
in clinical PET imaging of diffuse large B-cell lymphoma
- arxiv url: http://arxiv.org/abs/2403.07092v1
- Date: Mon, 11 Mar 2024 18:36:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 23:53:34.279929
- Title: A cascaded deep network for automated tumor detection and segmentation
in clinical PET imaging of diffuse large B-cell lymphoma
- Title(参考訳): びまん性大細胞型B細胞リンパ腫のPET画像診断における腫瘍自動検出とセグメンテーションのためのディープネットワーク
- Authors: Shadab Ahamed, Natalia Dubljevic, Ingrid Bloise, Claire Gowdy, Patrick
Martineau, Don Wilson, Carlos F. Uribe, Arman Rahmim, and Fereshteh
Yousefirizi
- Abstract要約: PET画像からのDLBCL腫瘍の自動検出と分画のための高速で効率的な3段階の深層学習モデルの開発と検証を行った。
本モデルは,全身PET画像における腫瘍の分節化において,単一のエンドツーエンドネットワークよりも有効である。
- 参考スコア(独自算出の注目度): 0.41579653852022364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate detection and segmentation of diffuse large B-cell lymphoma (DLBCL)
from PET images has important implications for estimation of total metabolic
tumor volume, radiomics analysis, surgical intervention and radiotherapy.
Manual segmentation of tumors in whole-body PET images is time-consuming,
labor-intensive and operator-dependent. In this work, we develop and validate a
fast and efficient three-step cascaded deep learning model for automated
detection and segmentation of DLBCL tumors from PET images. As compared to a
single end-to-end network for segmentation of tumors in whole-body PET images,
our three-step model is more effective (improves 3D Dice score from 58.9% to
78.1%) since each of its specialized modules, namely the slice classifier, the
tumor detector and the tumor segmentor, can be trained independently to a high
degree of skill to carry out a specific task, rather than a single network with
suboptimal performance on overall segmentation.
- Abstract(参考訳): PET画像からのびまん性大細胞型B細胞リンパ腫(DLBCL)の正確な検出とセグメンテーションは,全代謝性腫瘍容積の推定,放射線解析,外科的治療,放射線治療に重要な意味を持つ。
全身pet画像中の腫瘍の手動分割は、時間消費、労働集約、オペレータ依存である。
本研究では,PET画像からDLBCL腫瘍を自動的に検出・分節する高速で効率的な3段階の深層学習モデルを開発した。
PET画像全体における腫瘍のセグメンテーションのための1つのエンドツーエンドネットワークと比較すると,各モジュール,すなわちスライス分類器,腫瘍検出器,腫瘍セグメンタのそれぞれが,全体セグメンテーションに最適性能を持つ単一ネットワークではなく,特定のタスクを実行するための高度なスキルに独立して訓練できるため,我々の3ステップモデルの方が効果的である(58.9%から78.1%)。
関連論文リスト
- AutoPET III Challenge: Tumor Lesion Segmentation using ResEnc-Model Ensemble [1.3467243219009812]
我々は,新しいU-Netフレームワーク内で3次元残留エンコーダU-Netを訓練し,自動病変分割の性能を一般化した。
腫瘍病変のセグメンテーションを増強するために,テストタイム増強や他の後処理技術を利用した。
現在、私たちのチームはAuto-PET IIIチャレンジでトップの地位にあり、Diceスコア0.9627の予備テストセットでチャレンジベースラインモデルを上回っています。
論文 参考訳(メタデータ) (2024-09-19T20:18:39Z) - Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
AutoPET III ChallengeはPET/CT画像における腫瘍病変の自動切除の進歩に焦点を当てている。
我々は,PETスキャンの最大強度投影に基づいて,与えられたPET/CTのトレーサを識別する分類器を開発した。
我々の最終提出書は、公開可能なFDGおよびPSMAデータセットに対して76.90%と61.33%のクロスバリデーションDiceスコアを達成している。
論文 参考訳(メタデータ) (2024-09-18T17:16:57Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
腫瘍合成は、医用画像における人工腫瘍の作成を可能にし、腫瘍の検出とセグメンテーションのためのAIモデルのトレーニングを容易にする。
本論文は, 臨界観察を生かして, 一般化可能な腫瘍合成に向けて進歩的な一歩を踏み出した。
私たちは、Diffusion Modelsのような生成AIモデルが、単一の臓器から限られた数の腫瘍例を訓練しても、様々な臓器に一般化された現実的な腫瘍を作成できることを確認した。
論文 参考訳(メタデータ) (2024-02-29T18:57:39Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Whole-body tumor segmentation of 18F -FDG PET/CT using a cascaded and
ensembled convolutional neural networks [2.735686397209314]
本研究の目的は、18F-FDG PET/CT画像全体において癌疑い領域を自動的に分割するディープニューラルネットワークの性能を報告することである。
PET/CT画像を6mmの解像度で3D UNET CNNの重ね合わせで処理するケースドアプローチを開発した。
論文 参考訳(メタデータ) (2022-10-14T19:25:56Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Evidential segmentation of 3D PET/CT images [20.65495780362289]
3D PET/CT画像におけるリンパ腫のセグメント化には、信念関数に基づくセグメンテーション法が提案されている。
アーキテクチャは特徴抽出モジュールと明白なセグメンテーション(ES)モジュールで構成されている。
びまん性大細胞性b細胞リンパ腫173例のデータベース上で評価した。
論文 参考訳(メタデータ) (2021-04-27T16:06:27Z) - Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung
Tumor Segmentation [11.622615048002567]
マルチモーダル空間アテンションモジュール(MSAM)は腫瘍に関連する領域を強調することを学ぶ。
MSAMは一般的なバックボーンアーキテクチャやトレーニングされたエンドツーエンドに適用できる。
論文 参考訳(メタデータ) (2020-07-29T10:27:22Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。