Heterogeneous Image-based Classification Using Distributional Data
Analysis
- URL: http://arxiv.org/abs/2403.07126v1
- Date: Mon, 11 Mar 2024 19:41:40 GMT
- Title: Heterogeneous Image-based Classification Using Distributional Data
Analysis
- Authors: Alec Reinhardt, Newsha Nikzad, Raven J. Hollis, Galia Jacobson,
Millicent A. Roach, Mohamed Badawy, Peter Chul Park, Laura Beretta, Prasun K
Jalal, David T. Fuentes, Eugene J. Koay, and Suprateek Kundu
- Abstract summary: We develop a novel imaging-based distributional data analysis (DDA) approach that incorporates the probability (quantile) distribution of the pixel-level features.
Some distinctive features of the proposed approach include the ability to: (i) account for heterogeneity within the image; (ii) incorporate granular information spanning the entire distribution; and (iii) tackle variability in image sizes for unregistered images in cancer applications.
- Score: 0.1471145775252885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnostic imaging has gained prominence as potential biomarkers for early
detection and diagnosis in a diverse array of disorders including cancer.
However, existing methods routinely face challenges arising from various
factors such as image heterogeneity. We develop a novel imaging-based
distributional data analysis (DDA) approach that incorporates the probability
(quantile) distribution of the pixel-level features as covariates. The proposed
approach uses a smoothed quantile distribution (via a suitable basis
representation) as functional predictors in a scalar-on-functional quantile
regression model. Some distinctive features of the proposed approach include
the ability to: (i) account for heterogeneity within the image; (ii)
incorporate granular information spanning the entire distribution; and (iii)
tackle variability in image sizes for unregistered images in cancer
applications. Our primary goal is risk prediction in Hepatocellular carcinoma
that is achieved via predicting the change in tumor grades at post-diagnostic
visits using pre-diagnostic enhancement pattern mapping (EPM) images of the
liver. Along the way, the proposed DDA approach is also used for case versus
control diagnosis and risk stratification objectives. Our analysis reveals that
when coupled with global structural radiomics features derived from the
corresponding T1-MRI scans, the proposed smoothed quantile distributions
derived from EPM images showed considerable improvements in sensitivity and
comparable specificity in contrast to classification based on routinely used
summary measures that do not account for image heterogeneity. Given that there
are limited predictive modeling approaches based on heterogeneous images in
cancer, the proposed method is expected to provide considerable advantages in
image-based early detection and risk prediction.
Related papers
- FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms [60.195642571004804]
We propose FlowSDF, an image-guided conditional flow matching framework to represent the signed distance function (SDF)
By learning a vector field that is directly related to the probability path of a conditional distribution of SDFs, we can accurately sample from the distribution of segmentation masks.
arXiv Detail & Related papers (2024-05-28T11:47:12Z) - Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks.
Their notable performance heavily relies on labelled datasets, which limits their application in medical images.
This paper introduces a novel framework by incorporating distinctive discrepancy features.
arXiv Detail & Related papers (2024-05-08T11:26:49Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset.
We propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from medical images.
Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels.
arXiv Detail & Related papers (2023-10-10T08:44:47Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Variational Inference for Quantifying Inter-observer Variability in
Segmentation of Anatomical Structures [12.138198227748353]
Most segmentation methods simply model a mapping from an image to its single segmentation map and do not take the disagreement of annotators into consideration.
We propose a novel variational inference framework to model the distribution of plausible segmentation maps, given a specific MR image.
arXiv Detail & Related papers (2022-01-18T16:33:33Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
We propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation.
Experiments with gliomas and stroke lesions in brain MRI show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin.
arXiv Detail & Related papers (2020-04-30T18:03:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.