A New Random Forest Ensemble of Intuitionistic Fuzzy Decision Trees
- URL: http://arxiv.org/abs/2403.07363v2
- Date: Sun, 17 Mar 2024 11:08:15 GMT
- Title: A New Random Forest Ensemble of Intuitionistic Fuzzy Decision Trees
- Authors: Yingtao Ren, Xiaomin Zhu, Kaiyuan Bai, Runtong Zhang,
- Abstract summary: We propose a new random forest ensemble of intuitionistic fuzzy decision trees (IFDT)
The proposed method enjoys the power of the randomness from bootstrapped sampling and feature selection.
This study is the first to propose a random forest ensemble based on the intuitionistic fuzzy theory.
- Score: 5.831659043074847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classification is essential to the applications in the field of data mining, artificial intelligence, and fault detection. There exists a strong need in developing accurate, suitable, and efficient classification methods and algorithms with broad applicability. Random forest is a general algorithm that is often used for classification under complex conditions. Although it has been widely adopted, its combination with diverse fuzzy theory is still worth exploring. In this paper, we propose the intuitionistic fuzzy random forest (IFRF), a new random forest ensemble of intuitionistic fuzzy decision trees (IFDT). Such trees in forest use intuitionistic fuzzy information gain to select features and consider hesitation in information transmission. The proposed method enjoys the power of the randomness from bootstrapped sampling and feature selection, the flexibility of fuzzy logic and fuzzy sets, and the robustness of multiple classifier systems. Extensive experiments demonstrate that the IFRF has competitative and superior performance compared to other state-of-the-art fuzzy and ensemble algorithms. IFDT is more suitable for ensemble learning with outstanding classification accuracy. This study is the first to propose a random forest ensemble based on the intuitionistic fuzzy theory.
Related papers
- DynFrs: An Efficient Framework for Machine Unlearning in Random Forest [2.315324942451179]
DynFrs is a framework designed to enable efficient machine unlearning in Random Forests.
In experiments, applying Dynfrs on Extremely Trees yields substantial improvements.
arXiv Detail & Related papers (2024-10-02T14:20:30Z) - Adaptive Split Balancing for Optimal Random Forest [8.916614661563893]
We propose a new random forest algorithm that constructs the trees using a novel adaptive split-balancing method.
Our method achieves optimality in simple, smooth scenarios while adaptively learning the tree structure from the data.
arXiv Detail & Related papers (2024-02-17T09:10:40Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - A Mathematical Programming Approach to Optimal Classification Forests [1.0705399532413618]
We propose a novel mathematical optimization-based methodology in which a given number of trees are simultaneously constructed.
The classification rule is derived by assigning to each observation its most frequently predicted class among the trees in the forest.
We show that our proposed method has equal or superior performance compared with state-of-the-art tree-based classification methods.
arXiv Detail & Related papers (2022-11-18T20:33:08Z) - Contextual Decision Trees [62.997667081978825]
We propose a multi-armed contextual bandit recommendation framework for feature-based selection of a single shallow tree of the learned ensemble.
The trained system, which works on top of the Random Forest, dynamically identifies a base predictor that is responsible for providing the final output.
arXiv Detail & Related papers (2022-07-13T17:05:08Z) - Explaining random forest prediction through diverse rulesets [0.0]
Local Tree eXtractor (LTreeX) is able to explain the forest prediction for a given test instance with a few diverse rules.
We show that our proposed approach substantially outperforms other explainable methods in terms of predictive performance.
arXiv Detail & Related papers (2022-03-29T12:54:57Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning [62.82046926149371]
We propose a generic model transfer scheme to make Convlutional Neural Networks (CNNs) interpretable.
We achieve this by building a differentiable decision forest on top of CNNs.
We name the transferred model deep Dynamic Sequential Decision Forest (dDSDF)
arXiv Detail & Related papers (2021-06-05T07:41:18Z) - Improved Weighted Random Forest for Classification Problems [3.42658286826597]
The key to make well-performing ensemble model is in the diversity of the base models.
We propose several algorithms that intend to modify the weighting strategy of regular random forest.
The proposed models are able to introduce significant improvements compared to regular random forest.
arXiv Detail & Related papers (2020-09-01T16:08:45Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.