Discovering High-Strength Alloys via Physics-Transfer Learning
- URL: http://arxiv.org/abs/2403.07526v2
- Date: Sun, 26 Jan 2025 07:32:07 GMT
- Title: Discovering High-Strength Alloys via Physics-Transfer Learning
- Authors: Yingjie Zhao, Hongbo Zhou, Zian Zhang, Zhenxing Bo, Baoan Sun, Minqiang Jiang, Zhiping Xu,
- Abstract summary: Peierls stress measures material strength by evaluating dislocation resistance to plastic flow.<n>We propose a data-driven framework that leverages neural networks trained on force field simulations to understand crystal plasticity physics.
- Score: 1.2438700252649395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the strength of materials requires considering various length and time scales, striking a balance between accuracy and efficiency. Peierls stress measures material strength by evaluating dislocation resistance to plastic flow, reliant on elastic lattice responses and crystal slip energy landscape. Computational challenges due to the non-local and non-equilibrium nature of dislocations prohibit Peierls stress evaluation from state-of-the-art material databases. We propose a data-driven framework that leverages neural networks trained on force field simulations to understand crystal plasticity physics, predicting Peierls stress from material parameters derived via density functional theory computations, which are otherwise computationally intensive for direct dislocation modeling. This physics transfer approach successfully screen the strength of metallic alloys from a limited number of single-point calculations with chemical accuracy. Guided by these predictions, we fabricate high-strength binary alloys previously unexplored, utilizing high-throughput ion beam deposition techniques. The framework extends to problems facing the accuracy-performance dilemma in general by harnessing the hierarchy of physics of multiscale models in materials sciences.
Related papers
- Predictive Modeling and Uncertainty Quantification of Fatigue Life in Metal Alloys using Machine Learning [39.58317527488534]
This study introduces a novel approach for quantification uncertainty in fatigue life prediction of metal materials.
The proposed approach employs physics-based input features estimated using the Basquin fatigue model.
The synergy between physics-based models and data-driven models enhances the consistency in predicted values.
arXiv Detail & Related papers (2025-01-25T03:43:19Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Differentiable Physics-based System Identification for Robotic Manipulation of Elastoplastic Materials [43.99845081513279]
This work introduces a novel Differentiable Physics-based System Identification (DPSI) framework that enables a robot arm to infer the physics parameters of elastoplastic materials and the environment.
With only a single real-world interaction, the estimated parameters can accurately simulate visually and physically realistic behaviours.
arXiv Detail & Related papers (2024-11-01T13:04:25Z) - Automated Model Discovery for Tensional Homeostasis: Constitutive Machine Learning in Growth and Remodeling [0.0]
We extend our inelastic Constitutive Artificial Neural Networks (iCANNs) by incorporating kinematic growth and homeostatic surfaces.
We evaluate the ability of the proposed network to learn from experimentally obtained tissue equivalent data at the material point level.
arXiv Detail & Related papers (2024-10-17T15:12:55Z) - A physics-encoded Fourier neural operator approach for surrogate modeling of divergence-free stress fields in solids [6.877349053520825]
A so-called physics-encoded Fourier neural operator (PeFNO) is developed for surrogate modeling of the quasi-static equilibrium stress field in solids.
Stress field data for training are obtained from the numerical solution of a corresponding boundary-value problem for quasi-static mechanical equilibrium.
The output of the trained PeFNO is significantly more accurate in satisfying mechanical equilibrium than the output of either the trained PgFNO or the trained PiFNO.
arXiv Detail & Related papers (2024-08-27T21:18:41Z) - Learning Physics-Consistent Material Behavior from Dynamic Displacements [6.691537914484337]
We introduce a machine learning approach to learn physics-consistent relations solely from deformation material without boundary force information.
We demonstrate that it is robust to a significant level of noise and that it converges to the ground truth with increasing data resolution.
arXiv Detail & Related papers (2024-07-25T08:24:04Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
We introduce PHYRECON, the first approach to leverage both differentiable rendering and differentiable physics simulation to learn implicit surface representations.
Central to this design is an efficient transformation between SDF-based implicit representations and explicit surface points.
Our results also exhibit superior physical stability in physical simulators, with at least a 40% improvement across all datasets.
arXiv Detail & Related papers (2024-04-25T15:06:58Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - Use of Deep Neural Networks for Uncertain Stress Functions with
Extensions to Impact Mechanics [9.73713941604395]
We propose a deep neural network approach to model stress as a state function with quantile regression to capture uncertainty.
We extend these models to uniaxial impact mechanics using differential equations to demonstrate a use case and provide a framework for implementing this uncertainty-aware stress function.
arXiv Detail & Related papers (2023-11-03T00:12:24Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Physics-informed neural networks for modeling rate- and
temperature-dependent plasticity [3.1861308132183384]
This work presents a physics-informed neural network based framework to model the strain-rate and temperature dependence of the deformation fields in elastic-viscoplastic solids.
arXiv Detail & Related papers (2022-01-20T18:49:27Z) - Scalable Differentiable Physics for Learning and Control [99.4302215142673]
Differentiable physics is a powerful approach to learning and control problems that involve physical objects and environments.
We develop a scalable framework for differentiable physics that can support a large number of objects and their interactions.
arXiv Detail & Related papers (2020-07-04T19:07:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.