論文の概要: An Architecture for Noise-Aware Distributed Quantum Computation
- arxiv url: http://arxiv.org/abs/2403.07596v1
- Date: Tue, 12 Mar 2024 12:33:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 21:34:26.825522
- Title: An Architecture for Noise-Aware Distributed Quantum Computation
- Title(参考訳): ノイズ対応分散量子計算のためのアーキテクチャ
- Authors: Sanidhya Gupta and Ankur Raina
- Abstract要約: 分散量子計算とストレージのためのアーキテクチャを開発する。
我々は,各ノードに適した量子誤り訂正法を開発することにより,ノイズに対する各ノードの堅牢性を高める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Suppose Alice has access to $n$ remote quantum computing nodes capable of
universal quantum computation, connected to her by a quantum channel. She wants
to use these remote nodes jointly to make computations and store her quantum
states such that the actual computation is hidden from these remote nodes. We
describe a protocol to help Alice carry out her computation using these remote
nodes and store her computation results. We also make sure these nodes can
handle noise themselves in case of any error on these nodes. More precisely, we
develop an architecture for distributed quantum computation and storage,
addressing key challenges in quantum processing across remote nodes.
Additionally, we enhance the robustness of each node against noise by
developing quantum error-correcting methods suitable for each node.
- Abstract(参考訳): アリスが、量子チャネルで接続された普遍的な量子計算が可能な、n$のリモート量子コンピューティングノードにアクセスできると仮定する。
彼女は、これらのリモートノードを共同で計算し、実際の計算がこれらのリモートノードから隠れるように量子状態を保存したいと考えている。
本稿では,Aliceがリモートノードを用いて計算を行い,計算結果を格納するプロトコルについて述べる。
また、これらのノードにエラーが発生した場合、これらのノード自身がノイズを処理できるようにします。
より正確には、分散量子計算とストレージのためのアーキテクチャを開発し、遠隔ノード間の量子処理における重要な課題に対処する。
さらに,各ノードの雑音に対するロバスト性を高めるため,各ノードに適した量子誤り訂正手法を開発した。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Service Differentiation and Fair Sharing in Distributed Quantum
Computing [0.0]
将来的には、量子コンピュータが普及し、量子リピータのネットワークによって、リモート量子ビットのエンドツーエンドの絡み合いが提供されるようになる。
本稿では,この新しい環境におけるサービス分化の課題について考察する。
次に、各プールにどの計算ノードを組み込むべきかという問題を定義します。
論文 参考訳(メタデータ) (2023-01-10T14:16:42Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
本稿では、入力量子ビットの秘密性と量子ゲートを識別するプログラムを必要とする新しい計算量子計算法を提案する。
本稿では,この課題に対する2サーバプロトコルを提案する。
また,従来の通信のみを用いて,複数のユーザがサーバにマルチパーティ量子計算を依頼する多パーティ量子計算についても論じる。
論文 参考訳(メタデータ) (2022-11-02T09:01:33Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Quantum reservoir neural network implementation on coherently coupled
quantum oscillators [1.7086737326992172]
本稿では,多数の高密度結合ニューロンを得る量子貯水池の実装を提案する。
超伝導回路に基づく特定のハードウェア実装を解析する。
ベンチマークタスクでは99 %の最先端の精度が得られる。
論文 参考訳(メタデータ) (2022-09-07T15:24:51Z) - Quantum Network Tomography with Multi-party State Distribution [10.52717496410392]
量子ネットワークにおける量子チャネルのキャラクタリゼーションは、最重要事項である。
本稿では量子ネットワークトモグラフィーの問題点を紹介する。
一つのパウリ作用素によって記述された量子チャネルを持つ任意のスター量子ネットワークの場合、この問題を詳細に研究する。
論文 参考訳(メタデータ) (2022-06-06T21:47:09Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Efficient CNOT Synthesis for NISQ Devices [1.0152838128195467]
ノイズの多い中間スケール量子(NISQ)の時代、実際の量子デバイス上で量子アルゴリズムを実行することは、ユニークな課題に直面している。
この問題を解決するために,トークン還元法と呼ばれるCNOT合成法を提案する。
我々のアルゴリズムは、テストされた全ての量子アーキテクチャにおいて、最も広くアクセス可能なアルゴリズムよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-11-12T15:13:32Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
量子ノードのランダムネットワークが量子コンピューティングの堅牢なハードウェアとしてどのように使用できるかを示す。
我々のネットワークアーキテクチャは、量子ノードの単一層のみを最適化することで量子演算を誘導する。
数量子状態においては、量子回路内の複数の量子ゲートのシーケンスは単一の演算で圧縮することができる。
論文 参考訳(メタデータ) (2020-03-21T03:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。