論文の概要: AI incidents and 'networked trouble': The case for a research agenda
- arxiv url: http://arxiv.org/abs/2403.07879v1
- Date: Sun, 7 Jan 2024 11:23:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:00:28.668471
- Title: AI incidents and 'networked trouble': The case for a research agenda
- Title(参考訳): AIインシデントと「ネットワークトラブル」--研究課題の場合
- Authors: Tommy Shaffer Shane,
- Abstract要約: 私は、AIインシデントとそれらがオンライン環境でどのように構築されているかに焦点を当てた研究課題について論じます。
私は、2020年9月のAIインシデントを例にとり、あるTwitterユーザーが「恐ろしい実験」を作成して、画像の収集のためのTwitterのアルゴリズムの人種差別的偏見を実証した。
このようなAIインシデントは、さらなる研究を必要とするAIシステムに参加する上で重要な手段である、と私は主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Against a backdrop of widespread interest in how publics can participate in the design of AI, I argue for a research agenda focused on AI incidents - examples of AI going wrong and sparking controversy - and how they are constructed in online environments. I take up the example of an AI incident from September 2020, when a Twitter user created a 'horrible experiment' to demonstrate the racist bias of Twitter's algorithm for cropping images. This resulted in Twitter not only abandoning its use of that algorithm, but also disavowing its decision to use any algorithm for the task. I argue that AI incidents like this are a significant means for participating in AI systems that require further research. That research agenda, I argue, should focus on how incidents are constructed through networked online behaviours that I refer to as 'networked trouble', where formats for participation enable individuals and algorithms to interact in ways that others - including technology companies - come to know and come to care about. At stake, I argue, is an important mechanism for participating in the design and deployment of AI.
- Abstract(参考訳): 一般大衆がAIの設計に参加する方法に対する幅広い関心を背景に、私は、AIインシデント(AIの失敗と論争を引き起こす事例)と、それらがオンライン環境でどのように構築されているかに焦点を当てた研究課題について論じます。
私は、2020年9月のAIインシデントを例にとり、あるTwitterユーザーが「恐ろしい実験」を作成して、画像の収集のためのTwitterのアルゴリズムの人種差別的偏見を実証した。
結果としてTwitterは、そのアルゴリズムの使用を放棄しただけでなく、そのタスクにアルゴリズムを使用する決定を否定した。
このようなAIインシデントは、さらなる研究を必要とするAIシステムに参加する上で重要な手段である、と私は主張する。
その研究課題は、私が言うネットワーク化されたオンライン行動を通じてインシデントがどのように構築されるかに焦点を当てるべきである、と私は主張する。
AIの設計と展開に参加するための重要なメカニズムである、と私は主張する。
関連論文リスト
- Navigating AI Fallibility: Examining People's Reactions and Perceptions of AI after Encountering Personality Misrepresentations [7.256711790264119]
ハイパーパーソナライズされたAIシステムは、パーソナライズされたレコメンデーションを提供するために人々の特性をプロファイルする。
これらのシステムは、人々の最も個人的な特性を推測する際にエラーに免疫がない。
人格の誤表現に遭遇した後、人々がどのように反応し、AIを知覚するかを検討するための2つの研究を行った。
論文 参考訳(メタデータ) (2024-05-25T21:27:15Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - AI Ethics Issues in Real World: Evidence from AI Incident Database [0.6091702876917279]
インテリジェントなサービスロボット、言語/ビジョンモデル、そして自動運転がリードする、AIの非倫理的利用をよく目にする13のアプリケーション領域を特定します。
倫理的問題は、不適切な使用や人種的差別から、身体的安全と不公平なアルゴリズムまで、8つの異なる形態で現れる。
論文 参考訳(メタデータ) (2022-06-15T16:25:57Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z) - Artificial Intelligence is stupid and causal reasoning won't fix it [0.0]
Judea Pearl氏が提案するキーは、推論を因果推論と関連付けることで置き換えることだ。
AIマシーンが因果関係を把握できないというほどではないが、AIマシーン – 準計算 – はまったく理解できない。
論文 参考訳(メタデータ) (2020-07-20T22:23:50Z) - Towards AI Forensics: Did the Artificial Intelligence System Do It? [2.5991265608180396]
私たちは、デザインとグレーボックス分析によって潜在的に悪意のあるAIに焦点を当てています。
畳み込みニューラルネットワークによる評価は、悪意のあるAIを特定する上での課題とアイデアを示している。
論文 参考訳(メタデータ) (2020-05-27T20:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。