論文の概要: Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration
- arxiv url: http://arxiv.org/abs/2306.13769v3
- Date: Mon, 18 Mar 2024 17:29:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 01:10:08.974686
- Title: Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration
- Title(参考訳): ポケット特異的分子生成と実験のための関数群に基づく拡散
- Authors: Haitao Lin, Yufei Huang, Odin Zhang, Lirong Wu, Siyuan Li, Zhiyuan Chen, Stan Z. Li,
- Abstract要約: ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
- 参考スコア(独自算出の注目度): 63.23362798102195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, AI-assisted drug design methods have been proposed to generate molecules given the pockets' structures of target proteins. Most of them are atom-level-based methods, which consider atoms as basic components and generate atom positions and types. In this way, however, it is hard to generate realistic fragments with complicated structures. To solve this, we propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration. D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points. And the two kinds of components can together form complicated fragments that enhance ligand-protein interactions. To be specific, in the diffusion process, D3FG diffuses the data distribution of the positions, orientations, and types of the components into a prior distribution; In the generative process, the noise is gradually removed from the three variables by denoisers parameterized with designed equivariant graph neural networks. In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties. Besides, D3FG as a solution to a new task of molecule elaboration, could generate molecules with high affinities based on existing ligands and the hotspots of target proteins.
- Abstract(参考訳): 近年、標的タンパク質のポケットの構造から分子を生成するためにAIによる薬物設計法が提案されている。
その多くは原子準位に基づく手法であり、原子を基本成分とみなし、原子の位置と型を生成する。
しかし、この方法では複雑な構造を持つ現実的な断片を生成することは困難である。
そこで我々はD3FGを提案する。D3FGはポケット固有の分子の生成と実験のための機能群に基づく拡散モデルである。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
そしてこの2種類の成分は、リガンドとタンパク質の相互作用を強化する複雑な断片を形成することができる。
具体的には、拡散過程において、D3FGは、成分の位置、向き、タイプのデータ分布を事前分布に拡散させ、生成過程において、設計された同変グラフニューラルネットワークでパラメータ化して、3変数からノイズを徐々に除去する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
さらに、D3FGは分子の発見の新たな課題の解決策として、既存のリガンドと標的タンパク質のホットスポットに基づいて高い親和性を持つ分子を生成することができる。
関連論文リスト
- DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation
in 3D [38.181969810488916]
既存の方法は通常、原子分解能の分子を生成し、環のような固有の局所構造を無視する。
フラグメントに基づく分子生成は有望な戦略であるが、3D非自己回帰世代に適応することは容易ではない。
本稿では,この問題を解決するために,階層的拡散モデル(HierDiff)を提案する。
論文 参考訳(メタデータ) (2023-05-05T13:08:38Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
従来の研究は通常、原子の要素タイプと3次元座標を1つずつ生成する自己回帰的な方法で原子を生成する。
現実世界の分子系では、分子全体の原子間の相互作用が大域的であり、原子間のエネルギー関数が結合する。
本研究では、標的タンパク質に基づく分子3次元構造の生成拡散モデルを構築し、非自己回帰的に全原子レベルで構築する。
論文 参考訳(メタデータ) (2022-11-21T07:02:15Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
分子リンカ設計のためのE(3)等価な3次元拡散モデルDiffLinkerを提案する。
我々のモデルは、欠落した原子を中間に配置し、初期フラグメントを全て組み込んだ分子を設計する。
DiffLinkerは、より多種多様な合成可能な分子を生成する標準データセット上で、他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T09:13:37Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
分子構築に階層的エージェントを用いるスケーラブルな3D設計のための新しいフレームワークを提案する。
様々な実験において、エネルギーのみを考慮に入れたエージェントが、100以上の原子を持つ分子を効率よく生成できることが示されている。
論文 参考訳(メタデータ) (2022-02-01T18:54:24Z) - Generating 3D Molecules Conditional on Receptor Binding Sites with Deep
Generative Models [0.0]
本稿では,受容体結合部位に条件付き3次元分子構造を生成する深層学習システムについて述べる。
生成原子密度から有効な分子配座を構築するために原子フィッティング法と結合推論法を適用した。
この研究は、ディープラーニングによるタンパク質構造からの安定な生物活性分子のエンドツーエンド予測の扉を開く。
論文 参考訳(メタデータ) (2021-10-28T15:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。