論文の概要: Structure-aware generation of drug-like molecules
- arxiv url: http://arxiv.org/abs/2111.04107v1
- Date: Sun, 7 Nov 2021 15:19:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 17:29:16.720143
- Title: Structure-aware generation of drug-like molecules
- Title(参考訳): 薬物様分子の構造認識
- Authors: Pavol Drot\'ar, Arian Rokkum Jamasb, Ben Day, C\u{a}t\u{a}lina Cangea,
Pietro Li\`o
- Abstract要約: 深部生成法は、新しい分子をスクラッチから提案する(デノボ設計)。
本稿では, 分子間空間における3次元ポーズと協調して分子グラフを生成する新しい教師付きモデルを提案する。
ドッキングベンチマークを用いて,ドッキングモデルの評価を行い,ドッキング生成によって予測される結合親和性が8%向上し,薬物類似度が10%向上することが確認された。
- 参考スコア(独自算出の注目度): 2.449909275410288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structure-based drug design involves finding ligand molecules that exhibit
structural and chemical complementarity to protein pockets. Deep generative
methods have shown promise in proposing novel molecules from scratch (de-novo
design), avoiding exhaustive virtual screening of chemical space. Most
generative de-novo models fail to incorporate detailed ligand-protein
interactions and 3D pocket structures. We propose a novel supervised model that
generates molecular graphs jointly with 3D pose in a discretised molecular
space. Molecules are built atom-by-atom inside pockets, guided by structural
information from crystallographic data. We evaluate our model using a docking
benchmark and find that guided generation improves predicted binding affinities
by 8% and drug-likeness scores by 10% over the baseline. Furthermore, our model
proposes molecules with binding scores exceeding some known ligands, which
could be useful in future wet-lab studies.
- Abstract(参考訳): 構造に基づく薬物設計は、タンパク質ポケットの構造的および化学的相補性を示すリガンド分子の発見を伴う。
深層生成法は、新しい分子をスクラッチから提案し(デノボ設計)、化学空間の仮想的なスクリーニングを回避できることが示されている。
ほとんどのデノボモデルでは、詳細なリガンド-タンパク質相互作用と3Dポケット構造を組み込むことができない。
本研究では,分子空間内の3次元ポーズと協調して分子グラフを生成する新しい教師ありモデルを提案する。
分子はポケット内に原子単位で構築され、結晶データからの構造情報によって導かれる。
ドッキングベンチマークを用いてモデルを評価し, 誘導型生成により予測された結合親和性が8%向上し, 薬物類似性スコアが10%向上することを確認した。
さらに,本モデルでは,いくつかの既知の配位子を超える結合スコアを持つ分子を提案する。
関連論文リスト
- DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
論文 参考訳(メタデータ) (2023-05-30T06:41:20Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
分子グラフ構造アンダーラインCo設計のための機械学習ベースの生成フレームワークであるMollCodeを提案する。
MolCodeでは、3D幾何情報によって分子2Dグラフの生成が促進され、それによって分子3D構造の予測が導かれる。
分子設計における2次元トポロジーと3次元幾何は本質的に相補的な情報を含んでいることが明らかとなった。
論文 参考訳(メタデータ) (2023-04-12T13:34:22Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
従来の研究は通常、原子の要素タイプと3次元座標を1つずつ生成する自己回帰的な方法で原子を生成する。
現実世界の分子系では、分子全体の原子間の相互作用が大域的であり、原子間のエネルギー関数が結合する。
本研究では、標的タンパク質に基づく分子3次元構造の生成拡散モデルを構築し、非自己回帰的に全原子レベルで構築する。
論文 参考訳(メタデータ) (2022-11-21T07:02:15Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
分子リンカ設計のためのE(3)等価な3次元拡散モデルDiffLinkerを提案する。
我々のモデルは、欠落した原子を中間に配置し、初期フラグメントを全て組み込んだ分子を設計する。
DiffLinkerは、より多種多様な合成可能な分子を生成する標準データセット上で、他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T09:13:37Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
構造に基づくde novo法は、薬物と標的の相互作用を深く生成するアーキテクチャに組み込むことによって、アクティブなデータ不足を克服することができる。
本稿では,医薬品発見のためのタンパク質配列に基づく拡張学習モデルについて紹介する。
概念実証として、RLモデルを用いて分子を4つのターゲットに設計した。
論文 参考訳(メタデータ) (2022-08-14T10:41:52Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
本稿では,関係グラフアーキテクチャ内の3次元タンパク質-リガンド接触を符号化したグラフベース生成モデリング技術を提案する。
これらのモデルは、活性特異的な分子生成を可能にする条件付き変分オートエンコーダと、ターゲットの結合ポケット内の分子相互作用の予測を提供する配置接触生成を組み合わせる。
論文 参考訳(メタデータ) (2022-04-05T22:53:51Z) - A 3D Molecule Generative Model for Structure-Based Drug Design [18.29582138009123]
構造に基づく薬物設計において、特定のタンパク質結合部位に結合する分子を生成するという根本的な問題を研究する。
指定された3Dタンパク質結合部位に与えられた分子を生成する3D生成モデルを提案する。
論文 参考訳(メタデータ) (2022-03-20T03:54:47Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
分子構築に階層的エージェントを用いるスケーラブルな3D設計のための新しいフレームワークを提案する。
様々な実験において、エネルギーのみを考慮に入れたエージェントが、100以上の原子を持つ分子を効率よく生成できることが示されている。
論文 参考訳(メタデータ) (2022-02-01T18:54:24Z) - Generating 3D Molecules Conditional on Receptor Binding Sites with Deep
Generative Models [0.0]
本稿では,受容体結合部位に条件付き3次元分子構造を生成する深層学習システムについて述べる。
生成原子密度から有効な分子配座を構築するために原子フィッティング法と結合推論法を適用した。
この研究は、ディープラーニングによるタンパク質構造からの安定な生物活性分子のエンドツーエンド予測の扉を開く。
論文 参考訳(メタデータ) (2021-10-28T15:17:24Z) - Learning a Continuous Representation of 3D Molecular Structures with
Deep Generative Models [0.0]
生成モデルは、連続的な潜伏空間における分子の表現と最適化を学ぶ全く異なるアプローチである。
原子密度格子を用いた三次元分子構造の深部生成モデルについて述べる。
また、与えられた入力化合物に基づいて多様な分子の集合をサンプリングすることで、有効な薬物様分子の創出の可能性を高めることができる。
論文 参考訳(メタデータ) (2020-10-17T01:15:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。