論文の概要: Adaptation of the Multi-Concept Multivariate Elo Rating System to Medical Students Training Data
- arxiv url: http://arxiv.org/abs/2403.07908v1
- Date: Mon, 26 Feb 2024 19:19:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:00:28.641348
- Title: Adaptation of the Multi-Concept Multivariate Elo Rating System to Medical Students Training Data
- Title(参考訳): 多概念多変量エロレーティングシステムの医学生研修データへの適応
- Authors: Erva Nihan Kandemir, Jill-Jenn Vie, Adam Sanchez-Ayte, Olivier Palombi, Franck Ramus,
- Abstract要約: エロ評価システムは,学生の成績を予測する能力で広く認知されている。
本稿では,医療訓練プラットフォームで収集したデータに対して,Elo評価システムのマルチコンセプトを適応させる手法を提案する。
- 参考スコア(独自算出の注目度): 6.222836318380985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate estimation of question difficulty and prediction of student performance play key roles in optimizing educational instruction and enhancing learning outcomes within digital learning platforms. The Elo rating system is widely recognized for its proficiency in predicting student performance by estimating both question difficulty and student ability while providing computational efficiency and real-time adaptivity. This paper presents an adaptation of a multi concept variant of the Elo rating system to the data collected by a medical training platform, a platform characterized by a vast knowledge corpus, substantial inter-concept overlap, a huge question bank with significant sparsity in user question interactions, and a highly diverse user population, presenting unique challenges. Our study is driven by two primary objectives: firstly, to comprehensively evaluate the Elo rating systems capabilities on this real-life data, and secondly, to tackle the issue of imprecise early stage estimations when implementing the Elo rating system for online assessments. Our findings suggest that the Elo rating system exhibits comparable accuracy to the well-established logistic regression model in predicting final exam outcomes for users within our digital platform. Furthermore, results underscore that initializing Elo rating estimates with historical data remarkably reduces errors and enhances prediction accuracy, especially during the initial phases of student interactions.
- Abstract(参考訳): デジタル学習プラットフォームにおける教育指導の最適化と学習成果の向上において,質問の難易度と生徒のパフォーマンス予測が重要な役割を担っている。
エロ評価システムは,問題難易度と生徒の能力の両方を推定し,計算効率とリアルタイム適応度を推定し,生徒の成績を予測する能力で広く認識されている。
本稿では,医療訓練プラットフォームが収集したデータ,膨大な知識コーパス,膨大な概念間重複を特徴とするプラットフォーム,ユーザ間のインタラクションが広範囲に分散した巨大な質問バンク,および高度に多様なユーザ集団に,Eloレーティングシステムの多種多種多型を適応させ,ユニークな課題を提示する。
本研究は、まず、この実生活データに基づいて、Elo評価システムの性能を総合的に評価することと、オンラインアセスメントのためのElo評価システムを実装する際に、不正確な早期推定の問題に取り組むことの2つの主要な目的によって推進されている。
以上の結果から,Elo評価システムは,デジタルプラットフォーム内のユーザを対象とした最終試験結果の予測において,確立されたロジスティック回帰モデルに匹敵する精度を示すことが示唆された。
さらに,Elo評価推定を履歴データで初期化するとエラーが著しく減少し,特に学生間相互作用の初期段階での予測精度が向上することが示された。
関連論文リスト
- Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm [87.47506806135746]
一部のアプリケーションでは、エッジラーニングは、スクラッチから新しい2段階ラーニングへと焦点を移している。
本稿では,2段階のエッジ学習システムにおける共同コミュニケーションと計算資源管理の問題について考察する。
事前学習および微調整段階に対する共同資源管理の提案は,システム性能のトレードオフをうまくバランスさせることが示されている。
論文 参考訳(メタデータ) (2024-04-01T00:21:11Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
本稿では,学習からランクへの学習ループに,効率よく解ける公正ランキングモデルを組み込む方法について述べる。
特に,本論文は,OWA目標の制約された最適化を通じてバックプロパゲーションを行う方法を示す最初のものである。
論文 参考訳(メタデータ) (2024-02-07T20:53:53Z) - Admission Prediction in Undergraduate Applications: an Interpretable
Deep Learning Approach [0.6906005491572401]
本稿は,受験委員会の学部受験決定を検証することの課題について論じる。
本稿では、フィードフォワードと入力凸ニューラルネットワークというディープラーニングに基づく分類手法を提案する。
私たちのモデルは、従来の機械学習ベースのアプローチで最高のパフォーマンスを保ちながら、3.03%のマージンで高い精度を実現しています。
論文 参考訳(メタデータ) (2024-01-22T05:44:43Z) - Style Over Substance: Evaluation Biases for Large Language Models [17.13064447978519]
本研究では,大規模言語モデル(LLM)とともに,クラウドソースおよびエキスパートアノテータの挙動について検討する。
この結果から, 事実的誤りに対する回答は, 短すぎる, 文法的誤りを含む回答よりも好意的に評価され, 評価過程の偏りが示唆された。
評価面を1つのスコアにマージするのではなく,複数の次元にまたがるマシン生成テキストを独立に評価することを提案する。
論文 参考訳(メタデータ) (2023-07-06T14:42:01Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
「生涯学習」システムには,1)継続的学習,2)伝達と適応,3)拡張性があります。
この一連のメトリクスは、様々な複雑な生涯学習システムの開発に役立てることができることを示す。
論文 参考訳(メタデータ) (2023-01-18T21:58:54Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - A Multicriteria Evaluation for Data-Driven Programming Feedback Systems:
Accuracy, Effectiveness, Fallibility, and Students' Response [7.167352606079407]
データ駆動型プログラミングフィードバックシステムは、初心者が人間の教師がいない状態でプログラムするのに役立つ。
先行評価の結果、これらのシステムはテストスコアやタスク完了効率の点で学習を改善していることがわかった。
これらの側面には、現在の最先端の本質的な誤認、正しい/間違ったフィードバックに対する生徒のプログラミング行動、効果的な/非効率なシステムコンポーネントが含まれる。
論文 参考訳(メタデータ) (2022-07-27T00:29:32Z) - Abnormal-aware Multi-person Evaluation System with Improved Fuzzy
Weighting [0.0]
粗スクリーニングとスコア重み付きKendall-$tau$ Distanceからなる2段階スクリーニング法を選択する。
ファジィ・シンセティック・アセスメント・メソッド(FSE)を用いて、レビュアーによるスコアの重要度と信頼性を判定する。
論文 参考訳(メタデータ) (2022-05-01T03:42:43Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
データ管理研究は、データとアルゴリズムの公平性に関連するトピックに対する存在感と関心が高まっている。
我々は,その正しさ,公平性,効率性,スケーラビリティ,安定性よりも,13の公正な分類アプローチと追加の変種を幅広く分析している。
我々の分析は、異なるメトリクスとハイレベルなアプローチ特性がパフォーマンスの異なる側面に与える影響に関する新しい洞察を強調します。
論文 参考訳(メタデータ) (2021-01-18T22:55:40Z) - ELMV: an Ensemble-Learning Approach for Analyzing Electrical Health
Records with Significant Missing Values [4.9810955364960385]
本稿では,ELMV(Ensemble-Learning for Missing Value)フレームワークを提案する。
ELMVは、重要な特徴識別のための現実世界の医療データと、結果予測の欠落率の異なるシミュレーションデータのバッチで評価されている。
論文 参考訳(メタデータ) (2020-06-25T06:29:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。