論文の概要: A Zero-Shot LLM Framework for Automatic Assignment Grading in Higher Education
- arxiv url: http://arxiv.org/abs/2501.14305v1
- Date: Fri, 24 Jan 2025 08:01:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:58:43.124941
- Title: A Zero-Shot LLM Framework for Automatic Assignment Grading in Higher Education
- Title(参考訳): 高等教育における自動アサインメントグレーディングのためのゼロショットLLMフレームワーク
- Authors: Calvin Yeung, Jeff Yu, King Chau Cheung, Tat Wing Wong, Chun Man Chan, Kin Chi Wong, Keisuke Fujii,
- Abstract要約: ゼロショット大言語モデル(LLM)に基づく自動アサインメントグレーディング(AAG)システムを提案する。
このフレームワークはプロンプトエンジニアリングを利用して、追加のトレーニングや微調整を必要とせず、計算と説明の両方の学生の反応を評価する。
AAGシステムは、個々の強みと改善の領域を強調した調整されたフィードバックを提供し、それによって学生の学習結果を向上する。
- 参考スコア(独自算出の注目度): 0.6141800972050401
- License:
- Abstract: Automated grading has become an essential tool in education technology due to its ability to efficiently assess large volumes of student work, provide consistent and unbiased evaluations, and deliver immediate feedback to enhance learning. However, current systems face significant limitations, including the need for large datasets in few-shot learning methods, a lack of personalized and actionable feedback, and an overemphasis on benchmark performance rather than student experience. To address these challenges, we propose a Zero-Shot Large Language Model (LLM)-Based Automated Assignment Grading (AAG) system. This framework leverages prompt engineering to evaluate both computational and explanatory student responses without requiring additional training or fine-tuning. The AAG system delivers tailored feedback that highlights individual strengths and areas for improvement, thereby enhancing student learning outcomes. Our study demonstrates the system's effectiveness through comprehensive evaluations, including survey responses from higher education students that indicate significant improvements in motivation, understanding, and preparedness compared to traditional grading methods. The results validate the AAG system's potential to transform educational assessment by prioritizing learning experiences and providing scalable, high-quality feedback.
- Abstract(参考訳): 自動グルーピングは、学生の大量の作業を効率的に評価し、一貫した、偏見のない評価を提供し、学習を強化するために即時フィードバックを提供する能力によって、教育技術において欠かせないツールとなっている。
しかし、現在のシステムは、数ショットの学習方法における大規模なデータセットの必要性、パーソナライズされた行動可能なフィードバックの欠如、学生の経験よりもベンチマークパフォーマンスの過大評価など、重大な制限に直面している。
これらの課題に対処するため、ゼロショット大規模言語モデル(LLM)に基づく自動アサインメントグレーディング(AAG)システムを提案する。
このフレームワークはプロンプトエンジニアリングを利用して、追加のトレーニングや微調整を必要とせず、計算と説明の両方の学生の反応を評価する。
AAGシステムは、個々の強みと改善の領域を強調した調整されたフィードバックを提供し、それによって学生の学習結果を向上する。
本研究は, 従来の学習方法と比較して, モチベーション, 理解, 準備の大幅な向上を示す高等教育生のアンケート結果を含む総合的な評価を通じて, システムの有効性を実証するものである。
その結果,学習経験を優先し,スケーラブルで高品質なフィードバックを提供することで,AAGシステムの教育評価を変革する可能性を検証した。
関連論文リスト
- ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE)は、LLMが自己検証を通じてアウトプットを自己修正できる効率的なフレームワークである。
様々な推論タスクに関する実験により、ReVISEは効率的な自己補正を実現し、推論性能を大幅に向上することを示した。
論文 参考訳(メタデータ) (2025-02-20T13:50:02Z) - An Automated Explainable Educational Assessment System Built on LLMs [12.970776782360366]
AERA Chatは、学生の反応をインタラクティブかつ視覚的に評価するための自動教育アセスメントシステムである。
本システムでは,ユーザが質問や学生の回答を入力し,評価精度に関する洞察を教育者や研究者に提供する。
論文 参考訳(メタデータ) (2024-12-17T23:29:18Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
我々は、未学習アルゴリズムの有効性を頑健に評価するために設計された新しいVLMアンラーニングベンチマークであるFacial Identity Unlearning Benchmark (FIUBench)を紹介する。
情報ソースとその露出レベルを正確に制御する2段階評価パイプラインを適用した。
FIUBench 内の 4 つのベースライン VLM アンラーニングアルゴリズムの評価により,すべての手法がアンラーニング性能に制限されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-05T23:26:10Z) - Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses [0.0]
本研究では,大規模言語モデル(LLM)が数学教育における自動フィードバックを促進する可能性を探究することを目的とする。
我々は,Llamaの数学版であるMistralを採用し,このモデルを用いて,中学校数学問題に対する生徒の回答と教師によるフィードバックのデータセットを活用することによって,学生の反応を評価する。
2人の教師の判断を生かして,評価精度とフィードバックの質を評価する。
論文 参考訳(メタデータ) (2024-10-29T16:57:45Z) - Personalised Feedback Framework for Online Education Programmes Using Generative AI [0.0]
本稿では,埋め込みを組み込むことでChatGPTの機能を拡張したフィードバックフレームワークを提案する。
本研究の一環として,オープンエンドおよび複数選択質問に対する有効率90%と100%を達成できる概念解の証明を提案し,開発した。
論文 参考訳(メタデータ) (2024-10-14T22:35:40Z) - "I understand why I got this grade": Automatic Short Answer Grading with Feedback [36.74896284581596]
本稿では,5.8kの学生回答と参照回答と自動短解答(ASAG)タスクに対する質問のデータセットを提案する。
EngSAFデータセットは、複数のエンジニアリングドメインのさまざまな主題、質問、回答パターンをカバーするために、慎重にキュレートされている。
論文 参考訳(メタデータ) (2024-06-30T15:42:18Z) - Lessons Learned from Designing an Open-Source Automated Feedback System
for STEM Education [5.326069675013602]
RATsAppはオープンソースの自動フィードバックシステム(AFS)で、フォーマティブフィードバックなどの研究ベースの機能を組み込んでいる。
このシステムは、数学的能力、表現能力、データリテラシーなどの中核的なSTEM能力に焦点を当てている。
オープンソースプラットフォームであるRATsAppは、継続的な開発へのパブリックコントリビューションを奨励し、教育ツールを改善するための共同アプローチを促進する。
論文 参考訳(メタデータ) (2024-01-19T07:13:07Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Enabling Language Models to Implicitly Learn Self-Improvement [49.16868302881804]
大規模言語モデル(LLM)は、オープンエンドテキスト生成タスクにおいて顕著な機能を示した。
我々は、人間の嗜好データから改善目標を暗黙的に学習するImPlicit Self-ImprovemenT(PIT)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-02T04:29:40Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - Persistent Reinforcement Learning via Subgoal Curricula [114.83989499740193]
VaPRL(Value-accelerated Persistent Reinforcement Learning)は、初期状態のカリキュラムを生成する。
VaPRLは、エピソード強化学習と比較して、3桁の精度で必要な介入を減らす。
論文 参考訳(メタデータ) (2021-07-27T16:39:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。