A new theory bridging non-relativistic and QED-based path integrals
unveils more than quantum mechanics
- URL: http://arxiv.org/abs/2403.07941v1
- Date: Sat, 9 Mar 2024 09:54:49 GMT
- Title: A new theory bridging non-relativistic and QED-based path integrals
unveils more than quantum mechanics
- Authors: W. Wen
- Abstract summary: The Feynman path integral plays a crucial role in quantum mechanics, offering insights into the interaction between classical action and propagators.
However, the formulations of path integrals in classical quantum mechanics and quantum electrodynamics are neither unified nor interconnected.
In this work, we delve into the theoretical consistency, completeness, and integration with established path integral theories, revealing this concealed path integral form.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Feynman path integral plays a crucial role in quantum mechanics, offering
significant insights into the interaction between classical action and
propagators, and linking quantum electrodynamics (QED) with Feynman diagrams.
However, the formulations of path integrals in classical quantum mechanics and
QED are neither unified nor interconnected, suggesting the potential existence
of an important bridging theory that could be key to solving existing puzzles
in quantum mechanics. In this work, we delve into the theoretical consistency,
completeness, and integration with established path integral theories,
revealing this concealed path integral form. This newly uncovered form not only
connects various path integral approaches but also demonstrates its potential
in explaining quantum phenomena like the origin of spin and quantum nonlocal
correlations. It transcends conventional quantum mechanics, proposing a more
profound and fundamental physical principle.
Related papers
- Towards Relational Quantum Field Theory [0.0]
We develop a general integration theory for operator-valued functions (quantum fields) with respect to positive operator-valued measures (quantum frames)
A form of indefinitetemporality arises from quantum states in the context of relational frame bundles.
This offers novel perspectives on the problem of reconciling principles of generally relativistic and quantum physics.
arXiv Detail & Related papers (2024-05-24T11:31:27Z) - Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
Theory of quantum electrical circuits goes under the name of circuit quantum electrodynamics or circuit-QED.
The goal of the theory is to provide a quantum description of the most relevant degrees of freedom.
These lecture notes aim at giving a pedagogical overview of this subject for theoretically-oriented Master or PhD students in physics and electrical engineering.
arXiv Detail & Related papers (2023-12-08T19:26:34Z) - Does Quantum Mechanics Breed Larger, More Intricate Quantum Theories?
The Case for Experience-Centric Quantum Theory and the Interactome of Quantum
Theories [0.0]
We show that the recently proposed experience-centric quantum theory (ECQT) is a larger and richer theory of quantum behaviors.
ECQT allows the quantum information of the closed quantum system's developed state history to continually contribute to defining manybody interactions.
The interplay of unitarity and non-Markovianity in ECQT brings about a host of diverse behavioral phases.
arXiv Detail & Related papers (2023-08-04T16:33:24Z) - Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum tomography explains quantum mechanics [0.0]
A suggestive notion for what constitutes a quantum detector leads to a logically impeccable definition of measurement.
The various forms of quantum tomography for quantum states, quantum detectors, quantum processes, and quantum instruments are discussed.
The new approach is closer to actual practice than the traditional foundations.
arXiv Detail & Related papers (2021-10-11T14:09:30Z) - Quantum collision models: open system dynamics from repeated
interactions [1.5293427903448022]
We present an extensive introduction to quantum collision models (CMs), also known as repeated interactions schemes.
This article could be seen as an introduction to fundamentals of open quantum systems theory since most main concepts of this are treated such as quantum maps, Lindblad master equation, steady states, POVMs, quantum trajectories and Schrodinger equation.
arXiv Detail & Related papers (2021-06-22T18:00:01Z) - Self-adjointness in Quantum Mechanics: a pedagogical path [77.34726150561087]
This paper aims to make quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators.
Next to the central core of our line of reasoning, the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable.
arXiv Detail & Related papers (2020-12-28T21:19:33Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.