Red Teaming Models for Hyperspectral Image Analysis Using Explainable AI
- URL: http://arxiv.org/abs/2403.08017v2
- Date: Thu, 14 Mar 2024 18:40:34 GMT
- Title: Red Teaming Models for Hyperspectral Image Analysis Using Explainable AI
- Authors: Vladimir Zaigrajew, Hubert Baniecki, Lukasz Tulczyjew, Agata M. Wijata, Jakub Nalepa, Nicolas Longépé, Przemyslaw Biecek,
- Abstract summary: This paper introduces a methodology for examining machine learning models operating on hyperspectral images.
We use post-hoc explanation methods from the Explainable AI (XAI) domain to critically assess the best performing model.
Our approach effectively red teams the model by pinpointing and validating key shortcomings.
- Score: 10.475941327617686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing (RS) applications in the space domain demand machine learning (ML) models that are reliable, robust, and quality-assured, making red teaming a vital approach for identifying and exposing potential flaws and biases. Since both fields advance independently, there is a notable gap in integrating red teaming strategies into RS. This paper introduces a methodology for examining ML models operating on hyperspectral images within the HYPERVIEW challenge, focusing on soil parameters' estimation. We use post-hoc explanation methods from the Explainable AI (XAI) domain to critically assess the best performing model that won the HYPERVIEW challenge and served as an inspiration for the model deployed on board the INTUITION-1 hyperspectral mission. Our approach effectively red teams the model by pinpointing and validating key shortcomings, constructing a model that achieves comparable performance using just 1% of the input features and a mere up to 5% performance loss. Additionally, we propose a novel way of visualizing explanations that integrate domain-specific information about hyperspectral bands (wavelengths) and data transformations to better suit interpreting models for hyperspectral image analysis.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Characterizing Disparity Between Edge Models and High-Accuracy Base Models for Vision Tasks [5.081175754775484]
We introduce XDELTA, a novel explainable AI tool that explains differences between a high-accuracy base model and a computationally efficient but lower-accuracy edge model.
We conduct a comprehensive evaluation to test XDELTA's ability to explain model discrepancies, using over 1.2 million images and 24 models, and assessing real-world deployments with six participants.
arXiv Detail & Related papers (2024-07-13T22:05:58Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Enhancing the Fairness and Performance of Edge Cameras with Explainable
AI [3.4719449211802456]
Our research presents a diagnostic method using Explainable AI (XAI) for model debug.
We found the training dataset as the main bias source and suggested model augmentation as a solution.
arXiv Detail & Related papers (2024-01-18T10:08:24Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Model Inspired Autoencoder for Unsupervised Hyperspectral Image
Super-Resolution [25.878793557013207]
This paper focuses on hyperspectral image (HSI) super-resolution that aims to fuse a low-spatial-resolution HSI and a high-spatial-resolution multispectral image.
Existing deep learning-based approaches are mostly supervised that rely on a large number of labeled training samples.
We make the first attempt to design a model inspired deep network for HSI super-resolution in an unsupervised manner.
arXiv Detail & Related papers (2021-10-22T05:15:16Z) - Self-Regression Learning for Blind Hyperspectral Image Fusion Without
Label [11.291055330647977]
We propose a self-regression learning method that reconstructs hyperspectral image (HSI) and estimate the observation model.
In particular, we adopt an invertible neural network (INN) for restoring the HSI, and two fully-connected networks (FCN) for estimating the observation model.
Our model can outperform the state-of-the-art methods in experiments on both synthetic and real-world dataset.
arXiv Detail & Related papers (2021-03-31T04:48:21Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
We consider the single image super-resolution (SISR) problem, where a high-resolution (HR) image is generated based on a low-resolution (LR) input.
Most methods along this line rely on a predefined single-LR-single-HR mapping, which is not flexible enough for the SISR task.
We propose best-buddy GANs (Beby-GAN) for rich-detail SISR. Relaxing the immutable one-to-one constraint, we allow the estimated patches to dynamically seek the best supervision.
arXiv Detail & Related papers (2021-03-29T02:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.