論文の概要: Scattered Mixture-of-Experts Implementation
- arxiv url: http://arxiv.org/abs/2403.08245v2
- Date: Fri, 04 Oct 2024 03:44:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:06:24.996913
- Title: Scattered Mixture-of-Experts Implementation
- Title(参考訳): Scattered Mixture-of-Experts の実装
- Authors: Shawn Tan, Yikang Shen, Rameswar Panda, Aaron Courville,
- Abstract要約: ScatterMoEは,Sparse Mixture-of-Experts(SMoE)の実装である。
推論とトレーニングのスピード、メモリフットプリントを改善するためのいくつかの制限を克服する。
我々はMegablocksに対して実装をベンチマークし、高いスループットとメモリフットプリントを実現できることを示す。
- 参考スコア(独自算出の注目度): 27.412173707262536
- License:
- Abstract: We present ScatterMoE, an implementation of Sparse Mixture-of-Experts (SMoE) on GPUs. ScatterMoE builds upon existing implementations, and overcoming some of the limitations to improve inference and training speed, and memory footprint. This implementation achieves this by avoiding padding and making excessive copies of the input. We introduce ParallelLinear, the main component we use to build our implementation and the various kernels used to speed up the operation. We benchmark our implementation against Megablocks, and show that it enables a higher throughput and lower memory footprint. We also show how ParallelLinear enables extension of the Mixture-of-Experts concept by demonstrating with an implementation of Mixture of Attention.
- Abstract(参考訳): ScatterMoEはGPU上でのスパース混合(SmoE)の実装である。
ScatterMoEは既存の実装の上に構築されており、推論とトレーニング速度、メモリフットプリントを改善するためのいくつかの制限を克服している。
この実装は、パディングを回避し、入力を過剰にコピーすることでこれを実現する。
私たちはParallelLinearを紹介します。ParallelLinearは私たちが実装を構築するのに使っている主要コンポーネントであり、操作の高速化に使用するさまざまなカーネルです。
我々はMegablocksに対して実装をベンチマークし、高いスループットとメモリフットプリントを実現できることを示す。
また、ParallelLinearはMixture of Attentionの実装によってMixture-of-Expertsの概念の拡張を可能にしていることを示す。
関連論文リスト
- EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,新しいパイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法に比べて,プリフィルスループットが平均21%向上していることが判明した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models [58.3342517278868]
本稿では,Mixed-precision AutoRegressive LINearカーネルの設計について述べる。
バッチサイズは16-32までサポートでき、量子化のスピードアップが最大 (4times$) になる。
MarLINは非同期メモリアクセス、複雑なタスクスケジューリング、パイプライン化といったテクニックを組み合わせてこれを実現している。
論文 参考訳(メタデータ) (2024-08-21T16:10:41Z) - FLAASH: Flexible Accelerator Architecture for Sparse High-Order Tensor Contraction [3.6640504352010885]
本稿では,スパーステンソル収縮のためのフレキシブルでモジュラーな加速器であるFLAASHを紹介する。
我々のアーキテクチャは、スパースドット製品(またはその一部)を多数のスパースドット製品エンジンに分散することにより、スパーステンソル収縮を行う。
提案手法の有効性は,様々な評価によって示され,空間性や順序の増大とともに顕著なスピードアップが示される。
論文 参考訳(メタデータ) (2024-04-25T03:46:53Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Hybrid quantum programming with PennyLane Lightning on HPC platforms [0.0]
PennyLaneのLightningスイートは、CPU、GPU、HPCネイティブアーキテクチャとワークロードをターゲットにした高性能なステートベクタシミュレータのコレクションである。
QAOA、VQE、合成ワークロードなどの量子アプリケーションは、サポート対象の古典的コンピューティングアーキテクチャを実証するために実装されている。
論文 参考訳(メタデータ) (2024-03-04T22:01:03Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoTは並列デコーディングに基づくモデルに依存しないフレームワークである。
我々は、FastCoTが通常のアプローチと比較して、無視できる性能低下だけで、推論時間を20%近く削減できることを示します。
論文 参考訳(メタデータ) (2023-11-14T15:56:18Z) - MegaBlocks: Efficient Sparse Training with Mixture-of-Experts [19.541303844245835]
MegaBlocksはGPU上でのMixture-of-Experts(MoE)トレーニングを効率的に行うシステムである。
ブロックスパース演算の観点からMoEを再構成し,新しいブロックスパースGPUカーネルを開発する。
当社のアプローチではトークンやマップを現代的なハードウェアに効率的にドロップすることはなく、MoEよりも最大40%のエンドツーエンドのトレーニングスピードアップを実現しています。
論文 参考訳(メタデータ) (2022-11-29T00:27:08Z) - Parallel Actors and Learners: A Framework for Generating Scalable RL
Implementations [14.432131909590824]
強化学習(Reinforcement Learning, RL)は、ロボット工学、ゲーム、医療などの応用分野において大きな成功を収めている。
現在の実装は、不規則なメモリアクセスや同期オーバーヘッドといった問題により、パフォーマンスが劣っている。
マルチコアシステム上でスケーラブルな強化学習を実現するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-03T21:00:53Z) - ASH: A Modern Framework for Parallel Spatial Hashing in 3D Perception [91.24236600199542]
ASHは、GPU上の並列空間ハッシュのためのモダンで高性能なフレームワークである。
ASHはより高いパフォーマンスを実現し、よりリッチな機能をサポートし、より少ないコード行を必要とする。
ASHとそのサンプルアプリケーションはOpen3Dでオープンソース化されている。
論文 参考訳(メタデータ) (2021-10-01T16:25:40Z) - SMASH: Sparse Matrix Atomic Scratchpad Hashing [0.0]
本稿では,行単位の製品アプローチに基づく新しいSpGEMMカーネルの実装を提案する。
我々は原子インストラクションを利用して中間部分積を生成時にマージする。
我々のカーネルは競合するアプローチと比較して9.4倍のスピードアップを達成することができる。
論文 参考訳(メタデータ) (2021-05-29T00:22:50Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。