HRLAIF: Improvements in Helpfulness and Harmlessness in Open-domain Reinforcement Learning From AI Feedback
- URL: http://arxiv.org/abs/2403.08309v2
- Date: Thu, 14 Mar 2024 04:24:41 GMT
- Title: HRLAIF: Improvements in Helpfulness and Harmlessness in Open-domain Reinforcement Learning From AI Feedback
- Authors: Ang Li, Qiugen Xiao, Peng Cao, Jian Tang, Yi Yuan, Zijie Zhao, Xiaoyuan Chen, Liang Zhang, Xiangyang Li, Kaitong Yang, Weidong Guo, Yukang Gan, Xu Yu, Daniell Wang, Ying Shan,
- Abstract summary: We propose Hybrid Reinforcement Learning from AI Feedback (HRLAIF)
This method enhances the accuracy of AI annotations for responses, making the model's helpfulness more robust in training process.
HRLAIF inherits the ability of RLAIF to enhance human preference for outcomes at a low cost while also improving the satisfaction rate of responses.
- Score: 47.12549302721597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning from AI Feedback (RLAIF) has the advantages of shorter annotation cycles and lower costs over Reinforcement Learning from Human Feedback (RLHF), making it highly efficient during the rapid strategy iteration periods of large language model (LLM) training. Using ChatGPT as a labeler to provide feedback on open-domain prompts in RLAIF training, we observe an increase in human evaluators' preference win ratio for model responses, but a decrease in evaluators' satisfaction rate. Analysis suggests that the decrease in satisfaction rate is mainly due to some responses becoming less helpful, particularly in terms of correctness and truthfulness, highlighting practical limitations of basic RLAIF. In this paper, we propose Hybrid Reinforcement Learning from AI Feedback (HRLAIF). This method enhances the accuracy of AI annotations for responses, making the model's helpfulness more robust in training process. Additionally, it employs AI for Red Teaming, further improving the model's harmlessness. Human evaluation results show that HRLAIF inherits the ability of RLAIF to enhance human preference for outcomes at a low cost while also improving the satisfaction rate of responses. Compared to the policy model before Reinforcement Learning (RL), it achieves an increase of 2.08\% in satisfaction rate, effectively addressing the issue of a decrease of 4.58\% in satisfaction rate after basic RLAIF.
Related papers
- Navigating Noisy Feedback: Enhancing Reinforcement Learning with Error-Prone Language Models [8.025808955214957]
This paper studies the advantages and limitations of reinforcement learning from large language model feedback.
We propose a simple yet effective method for soliciting and applying feedback as a potential-based shaping function.
arXiv Detail & Related papers (2024-10-22T19:52:08Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
Fine-tuning large language models (LLMs) on human preferences has proven successful in enhancing their capabilities.
However, ensuring the safety of LLMs during the fine-tuning remains a critical concern.
We propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO) to address this issue.
arXiv Detail & Related papers (2024-08-27T17:31:21Z) - RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs [49.386699863989335]
Training large language models (LLMs) to serve as effective assistants for humans requires careful consideration.
A promising approach is reinforcement learning from human feedback (RLHF), which leverages human feedback to update the model in accordance with human preferences.
In this paper, we analyze RLHF through the lens of reinforcement learning principles to develop an understanding of its fundamentals.
arXiv Detail & Related papers (2024-04-12T15:54:15Z) - Improving Reinforcement Learning from Human Feedback Using Contrastive Rewards [26.40009657912622]
Reinforcement learning from human feedback (RLHF) is the mainstream paradigm used to align large language models (LLMs) with human preferences.
Yet existing RLHF heavily relies on accurate and informative reward models, which are vulnerable and sensitive to noise from various sources.
In this work, we improve the effectiveness of the reward model by introducing a penalty term on the reward, named as textitcontrastive rewards
arXiv Detail & Related papers (2024-03-12T14:51:57Z) - A Critical Evaluation of AI Feedback for Aligning Large Language Models [60.42291111149438]
We show that simple supervised fine-tuning with GPT-4 as the teacher outperforms existing RLAIF pipelines.
More generally, we find that the gains from RLAIF vary substantially across base model families, test-time evaluation protocols, and critic models.
arXiv Detail & Related papers (2024-02-19T18:53:54Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
Humans possess the ability to draw on past experiences explicitly when learning new tasks.
We propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information.
Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark.
arXiv Detail & Related papers (2023-11-16T09:07:34Z) - RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with AI Feedback [5.3113139864044046]
Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but gathering high-quality preference labels is expensive.
RLAIF offers a promising alternative that trains the reward model (RM) on preferences generated by an off-the-shelf LLM.
Our results suggest that RLAIF can achieve performance on-par with using human feedback, offering a potential solution to the scalability limitations of RLHF.
arXiv Detail & Related papers (2023-09-01T05:53:33Z) - Fine-tuning Language Models with Generative Adversarial Reward Modelling [30.424363135421917]
Reinforcement Learning with Human Feedback (RLHF) has been demonstrated to significantly enhance the performance of large language models (LLMs)
We propose another alternative approach: Reinforcement Learning with Generative Adversarial Feedback (RLGAF) to RLHF and SFT.
arXiv Detail & Related papers (2023-05-09T17:06:06Z) - Facial Feedback for Reinforcement Learning: A Case Study and Offline
Analysis Using the TAMER Framework [51.237191651923666]
We investigate the potential of agent learning from trainers' facial expressions via interpreting them as evaluative feedback.
With designed CNN-RNN model, our analysis shows that telling trainers to use facial expressions and competition can improve the accuracies for estimating positive and negative feedback.
Our results with a simulation experiment show that learning solely from predicted feedback based on facial expressions is possible.
arXiv Detail & Related papers (2020-01-23T17:50:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.