論文の概要: Extracting Explanations, Justification, and Uncertainty from Black-Box
Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2403.08652v1
- Date: Wed, 13 Mar 2024 16:06:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 13:38:26.504915
- Title: Extracting Explanations, Justification, and Uncertainty from Black-Box
Deep Neural Networks
- Title(参考訳): ブラックボックスによる説明・正当化・不確かさの抽出
ディープニューラルネットワーク
- Authors: Paul Ardis, Arjuna Flenner
- Abstract要約: 本稿では,Deep Neural Networks から説明,正当化,不確実性推定を抽出する新しいベイズ的手法を提案する。
我々の手法はメモリと計算の両面で効率的であり、再トレーニングなしにどんなブラックボックスDNNにも適用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks (DNNs) do not inherently compute or exhibit
empirically-justified task confidence. In mission critical applications, it is
important to both understand associated DNN reasoning and its supporting
evidence. In this paper, we propose a novel Bayesian approach to extract
explanations, justifications, and uncertainty estimates from DNNs. Our approach
is efficient both in terms of memory and computation, and can be applied to any
black box DNN without any retraining, including applications to anomaly
detection and out-of-distribution detection tasks. We validate our approach on
the CIFAR-10 dataset, and show that it can significantly improve the
interpretability and reliability of DNNs.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、本質的に計算や、経験的に修正されたタスクの信頼性を示すものではない。
ミッションクリティカルな応用においては、関連するDNN推論とそれを支持する証拠の両方を理解することが重要である。
本稿では,DNNから説明,正当化,不確実性推定を抽出する新しいベイズ的手法を提案する。
我々の手法はメモリと計算の両面で効率的であり、異常検出やアウト・オブ・ディストリビューション検出タスクなど、再トレーニングなしに任意のブラックボックスDNNに適用できる。
CIFAR-10データセットに対する我々のアプローチを検証し、DNNの解釈可能性と信頼性を大幅に向上させることができることを示す。
関連論文リスト
- Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Enumerating Safe Regions in Deep Neural Networks with Provable
Probabilistic Guarantees [86.1362094580439]
安全プロパティとDNNが与えられた場合、安全であるプロパティ入力領域のすべての領域の集合を列挙する。
この問題の #P-hardness のため,epsilon-ProVe と呼ばれる効率的な近似法を提案する。
提案手法は, 許容限界の統計的予測により得られた出力可到達集合の制御可能な過小評価を利用する。
論文 参考訳(メタデータ) (2023-08-18T22:30:35Z) - OccRob: Efficient SMT-Based Occlusion Robustness Verification of Deep
Neural Networks [7.797299214812479]
Occlusionは、ディープニューラルネットワーク(DNN)に対する一般的かつ容易に実現可能なセマンティック摂動である
DNNを騙していくつかのセグメントを隠蔽することで入力画像を誤分類し、おそらく深刻なエラーを引き起こす可能性がある。
DNNの既存のロバスト性検証アプローチは、非意味的な摂動に重点を置いている。
論文 参考訳(メタデータ) (2023-01-27T18:54:00Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Taming Reachability Analysis of DNN-Controlled Systems via
Abstraction-Based Training [14.787056022080625]
本稿では, 到達可能性解析における過剰近似DNNの欠如を回避するための, 抽象的アプローチを提案する。
我々は、実数をトレーニングの間隔に抽象化する抽象層を挿入することで、従来のDNNを拡張した。
我々は、DNN制御システムに対する最初のブラックボックス到達可能性分析手法を考案し、訓練されたDNNは抽象状態に対するアクションのためのブラックボックスオラクルとしてのみクエリされる。
論文 参考訳(メタデータ) (2022-11-21T00:11:50Z) - Verifying And Interpreting Neural Networks using Finite Automata [2.048226951354646]
DNN解析における問題に対処するための自動理論アプローチを提案する。
本稿では,DNNの入力出力動作を,弱いB"uchiオートマトンによって正確に捉えることができることを示す。
論文 参考訳(メタデータ) (2022-11-02T10:35:05Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Towards Fully Interpretable Deep Neural Networks: Are We There Yet? [17.88784870849724]
Deep Neural Networks(DNN)は、人工知能(AI)システムに対するユーザの信頼を妨げるブラックボックスとして振る舞う。
本報告では,本質的な解釈可能性を持つDNNの開発手法について概説する。
論文 参考訳(メタデータ) (2021-06-24T16:37:34Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
リカレントニューラルネットワーク(RNN)は、シーケンシャルおよび時系列データのモデリングに有効である。
RNNにおける既存の不確実性定量化のアプローチは、主にベイズ法に基づいている。
a)モデルトレーニングに干渉せず、その精度を損なうことなく、(b)任意のRNNアーキテクチャに適用し、(c)推定不確かさ間隔に関する理論的カバレッジ保証を提供する。
論文 参考訳(メタデータ) (2020-06-20T22:45:32Z) - Interval Neural Networks: Uncertainty Scores [11.74565957328407]
我々は、事前訓練された深層ニューラルネットワーク(DNN)の出力における不確実性スコアを生成する高速で非ベイズ的手法を提案する。
このインターバルニューラルネットワーク(INN)は、インターバル値パラメータを持ち、インターバル演算を用いてその入力を伝搬する。
画像再構成タスクの数値実験において,予測誤差の代用としてINNの実用性を実証する。
論文 参考訳(メタデータ) (2020-03-25T18:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。