論文の概要: One-Spike SNN: Single-Spike Phase Coding with Base Manipulation for ANN-to-SNN Conversion Loss Minimization
- arxiv url: http://arxiv.org/abs/2403.08786v1
- Date: Tue, 30 Jan 2024 02:00:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:16:13.564816
- Title: One-Spike SNN: Single-Spike Phase Coding with Base Manipulation for ANN-to-SNN Conversion Loss Minimization
- Title(参考訳): 1スパイクSNN: ANN-SNN変換損失最小化のためのベース操作による単一スパイク位相符号化
- Authors: Sangwoo Hwang, Jaeha Kung,
- Abstract要約: スパイクニューラルネットワーク(SNN)はイベント駆動であるため、エネルギー効率は従来の人工ニューラルネットワーク(ANN)よりも高い。
本研究では,SNN層間でデータを転送するスパイク数を最小限に抑える符号化方式として,単一スパイク位相符号化を提案する。
ANNに対する追加のトレーニングやアーキテクチャ上の制約がなければ、提案手法はCIFARとImageNetデータセットによる3つの畳み込みニューラルネットワーク(CNN)上で検証された推論精度(平均0.58%)を失うことはない。
- 参考スコア(独自算出の注目度): 0.41436032949434404
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As spiking neural networks (SNNs) are event-driven, energy efficiency is higher than conventional artificial neural networks (ANNs). Since SNN delivers data through discrete spikes, it is difficult to use gradient methods for training, limiting its accuracy. To keep the accuracy of SNNs similar to ANN counterparts, pre-trained ANNs are converted to SNNs (ANN-to-SNN conversion). During the conversion, encoding activations of ANNs to a set of spikes in SNNs is crucial for minimizing the conversion loss. In this work, we propose a single-spike phase coding as an encoding scheme that minimizes the number of spikes to transfer data between SNN layers. To minimize the encoding error due to single-spike approximation in phase coding, threshold shift and base manipulation are proposed. Without any additional retraining or architectural constraints on ANNs, the proposed conversion method does not lose inference accuracy (0.58% on average) verified on three convolutional neural networks (CNNs) with CIFAR and ImageNet datasets.In addition, graph convolutional networks (GCNs) are converted to SNNs successfully with an average accuracy loss of 0.90%.Most importantly, the energy efficiency of our SNN improves by 4.6~17.3 X compared to the ANN baseline.
- Abstract(参考訳): スパイクニューラルネットワーク(SNN)はイベント駆動であるため、エネルギー効率は従来の人工ニューラルネットワーク(ANN)よりも高い。
SNNは離散的なスパイクを通してデータを配信するので、トレーニングに勾配法を用いることは困難であり、精度は制限される。
ANNと類似したSNNの精度を維持するため、事前訓練されたANNをSNNに変換する(ANN-to-SNN変換)。
変換の間、SNNにおける一連のスパイクに対するANNのアクティベーションの符号化は変換損失を最小限に抑えるために重要である。
本研究では,SNN層間でデータを転送するスパイク数を最小限に抑える符号化方式として,単一スパイク位相符号化を提案する。
位相符号化における単一スパイク近似による符号化誤差を最小限に抑えるため,閾値シフトとベース操作を提案する。
CIFARとImageNetデータセットを用いた3つの畳み込みニューラルネットワーク(CNN)で検証された推論精度(平均0.58%)を損なうことなく、グラフ畳み込みネットワーク(GCN)は平均精度0.90%のSNNに変換される。
最も重要な点として、我々のSNNのエネルギー効率はANNのベースラインに比べて4.6~17.3X向上している。
関連論文リスト
- When Bio-Inspired Computing meets Deep Learning: Low-Latency, Accurate,
& Energy-Efficient Spiking Neural Networks from Artificial Neural Networks [22.721987637571306]
Spiking Neural Networks (SNN) は畳み込みニューラルネットワーク (CNN) に匹敵する精度を示している
ANN-to-SNN変換は、最近、複雑な画像認識タスクにおける最先端(SOTA)テスト精度に近いディープSNNの開発において、大きな注目を集めている。
提案手法は,SOTA変換手法で必要となる時間ステップを指数的に減少させる新しいANN-to-SNN変換フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-12T00:10:45Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
我々は,AIタスクにおいて,ANNのアクティベーション値とSNNのスパイク時間とのほぼ完全なマッピングを実現することができることを示す。
この研究は、電力制約のあるエッジコンピューティングプラットフォームに超低消費電力のTTFSベースのSNNをデプロイする方法を舗装している。
論文 参考訳(メタデータ) (2023-10-23T14:26:16Z) - Bridging the Gap between ANNs and SNNs by Calibrating Offset Spikes [19.85338979292052]
スパイキングニューラルネットワーク(SNN)は低消費電力と時間情報処理の特徴的な特徴から注目されている。
ANN-SNN変換は、SNNに適用するための最も一般的な訓練方法であり、変換されたSNNが大規模データセット上でANNに匹敵するパフォーマンスを達成することを確実にする。
本稿では、異なる変換誤差を評価してこれらの誤りを除去する代わりに、実際のSNN発射速度と所望のSNN発射速度のずれ度を測定するためにオフセットスパイクを定義する。
論文 参考訳(メタデータ) (2023-02-21T14:10:56Z) - Low Latency Conversion of Artificial Neural Network Models to
Rate-encoded Spiking Neural Networks [11.300257721586432]
スパイキングニューラルネットワーク(SNN)は、リソース制約のあるアプリケーションに適している。
典型的なレートエンコードされたSNNでは、グローバルに固定された時間ウィンドウ内の一連のバイナリスパイクを使用してニューロンを発射する。
本研究の目的は、ANNを等価SNNに変換する際の精度を維持しつつ、これを削減することである。
論文 参考訳(メタデータ) (2022-10-27T08:13:20Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
スパイクニューラルネットワークは、低消費電力環境における効率的な計算モデルである。
本稿では,SNNを高速かつメモリ効率で学習するためのSNN-to-ANN(SNN2ANN)フレームワークを提案する。
実験結果から,SNN2ANNをベースとしたモデルがベンチマークデータセットで良好に動作することが示された。
論文 参考訳(メタデータ) (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Optimized Potential Initialization for Low-latency Spiking Neural
Networks [21.688402090967497]
スパイキングニューラルネットワーク (SNN) は低消費電力, 生物学的可視性, 敵の強靭性といった特徴により, 非常に重要視されている。
ディープSNNをトレーニングする最も効果的な方法は、ディープネットワーク構造と大規模データセットで最高のパフォーマンスを実現したANN-to-SNN変換である。
本稿では、非常に低レイテンシ(32段階未満)で高性能に変換されたSNNを実現することを目的とする。
論文 参考訳(メタデータ) (2022-02-03T07:15:43Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
spiking neural networks (snns) は生物学に触発されたニューラルネットワーク (anns) である。
しきい値バランスとソフトリセット機構を組み合わせることで、重みをターゲットSNNに転送する新しい戦略パイプラインを提案する。
提案手法は,SNNのエネルギーとメモリの制限によるサポートを向上し,組込みプラットフォームに組み込むことが期待できる。
論文 参考訳(メタデータ) (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。