論文の概要: LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models
- arxiv url: http://arxiv.org/abs/2403.08822v1
- Date: Wed, 28 Feb 2024 06:50:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 05:40:54.633913
- Title: LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models
- Title(参考訳): LoRA-SP:大規模言語モデルの資源効率の良い微調整のための線形部分パラメータ適応
- Authors: Yichao Wu, Yafei Xiang, Shuning Huo, Yulu Gong, Penghao Liang,
- Abstract要約: LoRA-SPはランダム化半選択パラメータ凍結を利用した新しい手法である。
LoRA-SPは、モデル性能を損なうことなく、計算とメモリの要求を大幅に削減する。
- 参考スコア(独自算出の注目度): 7.926974917872204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In addressing the computational and memory demands of fine-tuning Large Language Models(LLMs), we propose LoRA-SP(Streamlined Partial Parameter Adaptation), a novel approach utilizing randomized half-selective parameter freezing within the Low-Rank Adaptation(LoRA)framework. This method efficiently balances pre-trained knowledge retention and adaptability for task-specific optimizations. Through a randomized mechanism, LoRA-SP determines which parameters to update or freeze, significantly reducing computational and memory requirements without compromising model performance. We evaluated LoRA-SP across several benchmark NLP tasks, demonstrating its ability to achieve competitive performance with substantially lower resource consumption compared to traditional full-parameter fine-tuning and other parameter-efficient techniques. LoRA-SP innovative approach not only facilitates the deployment of advanced NLP models in resource-limited settings but also opens new research avenues into effective and efficient model adaptation strategies.
- Abstract(参考訳): そこで我々は,Low-Rank Adaptation(LoRA)フレーム内でのランダム化半選択パラメータ凍結を利用した新しいアプローチであるLoRA-SP(Streamlined partial Parameter Adaptation)を提案する。
本手法は,タスク固有の最適化のための学習済み知識保持と適応性を効率的にバランスさせる。
ランダム化機構により、LoRA-SPはどのパラメータを更新または凍結するかを決定し、モデル性能を損なうことなく計算とメモリの要求を大幅に削減する。
我々は,従来の全パラメータ細調整や他のパラメータ効率の手法と比較して,リソース消費を大幅に削減して,競争性能を実現する能力を示した。
LoRA-SPの革新的なアプローチは、リソース制限された設定における高度なNLPモデルの展開を促進するだけでなく、新しい研究手法を効果的かつ効率的なモデル適応戦略に開放する。
関連論文リスト
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、下流タスクのための大規模な事前学習モデルに効果的に適応する、PEFT (Efficient Fine Tuning) 手法として人気がある。
モデル更新に低階テンソルパラメトリゼーションを用いる新しい手法を提案する。
提案手法は,大規模言語モデルの微調整に有効であり,比較性能を維持しつつ,パラメータ数の大幅な削減を実現している。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
我々は、効率的なソースフリードメイン適応(SFDA)のためのフレームワークを提案する。
提案手法は,ソースモデル作成およびターゲット側適応のための改良されたパラダイムを導入する。
我々は,本フレームワークが様々なSFDA法と互換性があり,計算効率が高いことを実証した。
論文 参考訳(メタデータ) (2024-10-03T02:12:03Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
本研究では,事前学習した拡散モデルにおけるパラメータの重要性について検討する。
本稿では,これらの非効率パラメータをフル活用するための新しいモデル微調整法を提案する。
本手法は,下流アプリケーションにおける事前学習モデルの生成能力を向上する。
論文 参考訳(メタデータ) (2024-09-10T16:44:47Z) - Enhancing Parameter Efficiency and Generalization in Large-Scale Models: A Regularized and Masked Low-Rank Adaptation Approach [10.980433187379868]
低ランク適応(LoRA)は、良好な微調整結果を維持しつつ、資源消費を減らすために開発された。
本稿では,LoRA法により近似された行列更新の本質的な次元について検討し,本質的な次元を増大させることによる性能上の利点を明らかにする。
論文 参考訳(メタデータ) (2024-07-16T15:26:31Z) - PRoLoRA: Partial Rotation Empowers More Parameter-Efficient LoRA [45.38491644250814]
部分回転型低ランク適応(PRoLoRA)は層内共有機構である。
PRoLoRAはその利点を保ち、ピアパラメータ共有手法の欠点を効果的に回避する。
実験によりPRoLoRAのパラメータ効率が著しく向上した。
論文 参考訳(メタデータ) (2024-02-24T13:39:05Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
本稿ではパラメータ共有言語モデルの推論効率を向上させる手法を提案する。
また、完全あるいは部分的に共有されたモデルにつながる単純な事前学習手法を提案する。
その結果,本手法が自己回帰的および自己符号化的PLMに与える影響が示された。
論文 参考訳(メタデータ) (2023-10-19T15:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。