論文の概要: People Attribute Purpose to Autonomous Vehicles When Explaining Their Behavior
- arxiv url: http://arxiv.org/abs/2403.08828v2
- Date: Tue, 30 Apr 2024 17:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:58:59.697539
- Title: People Attribute Purpose to Autonomous Vehicles When Explaining Their Behavior
- Title(参考訳): 人々は行動を説明するとき、自動運転車の目的に貢献する
- Authors: Balint Gyevnar, Stephanie Droop, Tadeg Quillien, Shay B. Cohen, Neil R. Bramley, Christopher G. Lucas, Stefano V. Albrecht,
- Abstract要約: 認知科学は、人々がどの説明を期待するか、どのフォーマットでこれらの説明を行うのかを理解するのに役立ちます。
本研究は、自動運転車の振る舞いを14のシナリオで説明するための2つの調査から得られた経験的データを報告する。
参加者は、テレロジカルな説明は偽物よりもはるかに品質が高いと考えた。
- 参考スコア(独自算出の注目度): 22.138074429937795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive science can help us understand which explanations people might expect, and in which format they frame these explanations, whether causal, counterfactual, or teleological (i.e., purpose-oriented). Understanding the relevance of these concepts is crucial for building good explainable AI (XAI) which offers recourse and actionability. Focusing on autonomous driving, a complex decision-making domain, we report empirical data from two surveys on (i) how people explain the behavior of autonomous vehicles in 14 unique scenarios (N1=54), and (ii) how they perceive these explanations in terms of complexity, quality, and trustworthiness (N2=356). Participants deemed teleological explanations significantly better quality than counterfactual ones, with perceived teleology being the best predictor of perceived quality and trustworthiness. Neither the perceived teleology nor the quality were affected by whether the car was an autonomous vehicle or driven by a person. This indicates that people use teleology to evaluate information about not just other people but also autonomous vehicles. Taken together, our findings highlight the importance of explanations that are framed in terms of purpose rather than just, as is standard in XAI, the causal mechanisms involved. We release the 14 scenarios and more than 1,300 elicited explanations publicly as the Human Explanations for Autonomous Driving Decisions (HEADD) dataset.
- Abstract(参考訳): 認知科学は、人々がどの説明を期待するか、どの形式で、因果的、反事実的、テレロジカル(目的指向)を問わず、これらの説明を体系化するかを理解するのに役立つ。
これらの概念の関連性を理解することは、会話と行動可能性を提供する優れた説明可能なAI(XAI)を構築するために不可欠である。
複雑な意思決定領域である自律運転に着目して,2つの調査から得られた実証データを報告する。
(i)14のシナリオ(N1=54)で自動運転車の動作を説明する方法、及び
(II)複雑さ、品質、信頼性の観点からこれらの説明をどう受け止めるか(N2=356)。
参加者はテレロジカルな説明が反ファクト的な説明よりも著しく品質が良く、テレロジカルな説明が品質と信頼性の最良の予測要因であると考えた。
認識されたテレロジーや品質は、車両が自動運転車であるか、または人によって運転されているかに影響されない。
これは、人々がテレロジーを使用して、他者だけでなく、自動運転車に関する情報を評価することを意味する。
また,本研究は,XAIの標準的な因果的メカニズムとして,単に目的というよりは,目的という観点で考えることの重要性を強調した。
14のシナリオと1,300以上の提案された説明を、Human Explanations for Autonomous Driving Decisions(HEADD)データセットとして公開しています。
関連論文リスト
- Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
ブラックボックスAIシステムは、誤った判断を下すと、責任と説明責任の問題を引き起こす可能性がある。
説明可能なAI(XAI)は、開発者とエンドユーザの間の知識ギャップを埋めようとしている。
論文 参考訳(メタデータ) (2023-01-13T01:08:49Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems [0.9542023122304099]
我々は、決定を完全に理解するためには、関連する特徴に関する知識だけでなく、無関係な情報の認識もAIシステムのユーザーのメンタルモデルの作成に大きく貢献すると主張している。
私たちのアプローチは、Alterfactual Explanations(Alterfactual Explanations)と呼ばれ、AIの入力の無関係な特徴が変更された別の現実を示すことに基づいています。
我々は,AIの推論のさまざまな側面を,反事実的説明法よりも理解するために,人工的説明が適していることを示す。
論文 参考訳(メタデータ) (2022-07-19T16:20:37Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
我々は「成功」は、その説明がどんな情報を含むかだけでなく、人間の説明者がどのような情報から理解するかにも依存すると考えている。
我々は、人間の説明による社会的帰属の枠組みとして、行動の民意的概念を用いる。
論文 参考訳(メタデータ) (2022-01-27T00:19:41Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Cognitive Perspectives on Context-based Decisions and Explanations [0.0]
本稿では,xaiの文脈的重要性と有用性が,現在の新たな行動指向予測表現構造の波と重なり合うことを示す。
これは説明可能なAIに影響を及ぼし、人間の聴衆にコンピュータの意思決定の説明を提供することが目的です。
論文 参考訳(メタデータ) (2021-01-25T15:49:52Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - How to Answer Why -- Evaluating the Explanations of AI Through Mental
Model Analysis [0.0]
人間中心のAI研究の鍵となる疑問は、ユーザーのメンタルモデルをどのように有効に調査するかである。
実験的な研究手法としてメンタルモデルが適切かどうかを評価する。
本稿では、人間中心の方法で説明可能なAIアプローチを評価するための模範的手法を提案する。
論文 参考訳(メタデータ) (2020-01-11T17:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。