Uncertainty Quantification for cross-subject Motor Imagery classification
- URL: http://arxiv.org/abs/2403.09228v1
- Date: Thu, 14 Mar 2024 09:48:48 GMT
- Title: Uncertainty Quantification for cross-subject Motor Imagery classification
- Authors: Prithviraj Manivannan, Ivo Pascal de Jong, Matias Valdenegro-Toro, Andreea Ioana Sburlea,
- Abstract summary: Uncertainty Quantification aims to determine when a Machine Learning model is likely to be wrong.
Deep Ensembles performed best, both in terms of classification performance and cross-subject Uncertainty Quantification performance.
Standard CNNs with Softmax output performed better than some of the more advanced methods.
- Score: 5.62479170374811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty Quantification aims to determine when the prediction from a Machine Learning model is likely to be wrong. Computer Vision research has explored methods for determining epistemic uncertainty (also known as model uncertainty), which should correspond with generalisation error. These methods theoretically allow to predict misclassifications due to inter-subject variability. We applied a variety of Uncertainty Quantification methods to predict misclassifications for a Motor Imagery Brain Computer Interface. Deep Ensembles performed best, both in terms of classification performance and cross-subject Uncertainty Quantification performance. However, we found that standard CNNs with Softmax output performed better than some of the more advanced methods.
Related papers
- Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness [106.52630978891054]
We present a taxonomy of uncertainty specific to vision-language AI systems.
We also introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error.
arXiv Detail & Related papers (2024-07-02T04:23:54Z) - Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations.
Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions.
The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels.
arXiv Detail & Related papers (2024-04-16T06:40:51Z) - A Data-Driven Measure of Relative Uncertainty for Misclassification
Detection [25.947610541430013]
We introduce a data-driven measure of uncertainty relative to an observer for misclassification detection.
By learning patterns in the distribution of soft-predictions, our uncertainty measure can identify misclassified samples.
We demonstrate empirical improvements over multiple image classification tasks, outperforming state-of-the-art misclassification detection methods.
arXiv Detail & Related papers (2023-06-02T17:32:03Z) - Calibrating Ensembles for Scalable Uncertainty Quantification in Deep
Learning-based Medical Segmentation [0.42008820076301906]
Uncertainty quantification in automated image analysis is highly desired in many applications.
Current uncertainty quantification approaches do not scale well in high-dimensional real-world problems.
We propose a scalable and intuitive framework to calibrate ensembles of deep learning models to produce uncertainty quantification measurements.
arXiv Detail & Related papers (2022-09-20T09:09:48Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - An Uncertainty Estimation Framework for Probabilistic Object Detection [5.83620245905973]
We introduce a new technique that combines two popular methods to estimate uncertainty in object detection.
Our framework employs deep ensembles and Monte Carlo dropout for approximating predictive uncertainty.
arXiv Detail & Related papers (2021-06-28T22:29:59Z) - Accounting for Model Uncertainty in Algorithmic Discrimination [16.654676310264705]
We argue that the fairness approaches should instead focus only on equalizing errors arising due to model uncertainty.
We draw a connection between predictive multiplicity and model uncertainty and argue that the techniques from predictive multiplicity could be used to identify errors made due to model uncertainty.
arXiv Detail & Related papers (2021-05-10T10:34:12Z) - Uncertainty-Aware Few-Shot Image Classification [118.72423376789062]
Few-shot image classification learns to recognize new categories from limited labelled data.
We propose Uncertainty-Aware Few-Shot framework for image classification.
arXiv Detail & Related papers (2020-10-09T12:26:27Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.