Field test of mode-pairing quantum key distribution
- URL: http://arxiv.org/abs/2403.09339v1
- Date: Thu, 14 Mar 2024 12:32:50 GMT
- Title: Field test of mode-pairing quantum key distribution
- Authors: Hao-Tao Zhu, Yizhi Huang, Wen-Xin Pan, Chao-Wu Zhou, Jianjun Tang, Hong He, Ming Cheng, Xiandu Jin, Mi Zou, Shibiao Tang, Xiongfeng Ma, Teng-Yun Chen, Jian-Wei Pan,
- Abstract summary: We employ the mode-pairing scheme into existing inter-city fiber links, conducting field tests across distances ranging from tens to about a hundred kilometers.
Our system achieves a key rate of $1.217$ kbit/s in a $195.85$ km symmetric link and $3.089$ kbit/s in a $127.92$ km asymmetric link without global phase locking.
- Score: 2.6347585668463247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum key distribution is a cornerstone of quantum technology, offering information-theoretical secure keys for remote parties. With many quantum communication networks established globally, the mode-pairing protocol stands out for its efficacy over inter-city distances using simple setups, emerging as a promising solution. In this study, we employ the mode-pairing scheme into existing inter-city fiber links, conducting field tests across distances ranging from tens to about a hundred kilometers. Our system achieves a key rate of $1.217$ kbit/s in a $195.85$ km symmetric link and $3.089$ kbit/s in a $127.92$ km asymmetric link without global phase locking. The results demonstrate that the mode-pairing protocol can achieve key rates comparable to those of a single quantum link between two trusted nodes on the Beijing-Shanghai backbone line, effectively reducing the need for half of the trusted nodes. These field tests confirm the mode-pairing scheme's adaptability, efficiency, and practicality, positioning it as a highly suitable protocol for quantum networks.
Related papers
- High-Rate 16-node quantum access network based on passive optical
network [14.923361967583348]
In most built quantum secure networks, point-to-multipoint (PTMP) topology is one of the most popular schemes.
Here, we report an experimental demonstration of a high-rate 16-nodes quantum access network based on passive optical network.
arXiv Detail & Related papers (2024-03-05T01:44:13Z) - Experimental Twin-Field Quantum Key Distribution Over 1000 km Fiber
Distance [19.003857958984558]
Quantum key distribution (QKD) aims to generate secure private keys shared by two remote parties.
We demonstrate a fiber-based twin-field QKD over 1002 km.
The secure key rate is $9.53times10-12$ per pulse through 1002 km fiber in the regime, and $8.75times10-12$ per pulse at 952 km considering the finite size effect.
arXiv Detail & Related papers (2023-03-28T07:59:59Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Single-emitter quantum key distribution over 175 km of fiber with
optimised finite key rates [45.82374977939355]
We perform fibre-based quantum key distribution with a quantum dot frequency-converted to telecom wavelength.
We demonstrate positive key rates up to 175 km in the regime.
This result represents major progress towards the feasibility of long-distance single-emitter QKD networks.
arXiv Detail & Related papers (2022-09-07T18:03:36Z) - Twin-field quantum key distribution without optical frequency
dissemination [0.35557219875516644]
We introduce a novel technique that can stabilise an open channel without using a closed interferometer.
We develop a simple and versatile TF-QKD setup that does not need service fibre and can operate over links of 100 km asymmetry.
We confirm the setup's repeater-like behaviour and obtain a finite-size rate of 0.32 bit/s at a distance of 615.6 km.
arXiv Detail & Related papers (2022-08-19T13:56:14Z) - Continuous entanglement distribution over a transnational 248 km fibre
link [58.720142291102135]
Entanglement is the basis of many quantum applications.
We present a continuously working international link between Austria and Slovakia.
We measure stable pair rates of 9 s$-1$ over an exemplary operation time of 110 hours.
arXiv Detail & Related papers (2022-03-23T13:55:27Z) - Quantum key distribution surpassing the repeaterless rate-transmittance
bound without global phase locking [0.5857929080874287]
We propose a mode-pairing measurement-device-independent quantum key distribution scheme.
It can achieve a key rate of $R=O(sqrteta)$ without global phase locking when the local phase fluctuation is mild.
arXiv Detail & Related papers (2022-01-12T05:10:19Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.