Heuristic Reasoning in AI: Instrumental Use and Mimetic Absorption
- URL: http://arxiv.org/abs/2403.09404v2
- Date: Mon, 18 Mar 2024 12:45:01 GMT
- Title: Heuristic Reasoning in AI: Instrumental Use and Mimetic Absorption
- Authors: Anirban Mukherjee, Hannah Hanwen Chang,
- Abstract summary: We propose a novel program of reasoning for artificial intelligence (AI)
We show that AIs manifest an adaptive balancing of precision and efficiency, consistent with principles of resource-rational human cognition.
Our findings reveal a nuanced picture of AI cognition, where trade-offs between resources and objectives lead to the emulation of biological systems.
- Score: 0.2209921757303168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deviating from conventional perspectives that frame artificial intelligence (AI) systems solely as logic emulators, we propose a novel program of heuristic reasoning. We distinguish between the 'instrumental' use of heuristics to match resources with objectives, and 'mimetic absorption,' whereby heuristics manifest randomly and universally. Through a series of innovative experiments, including variations of the classic Linda problem and a novel application of the Beauty Contest game, we uncover trade-offs between maximizing accuracy and reducing effort that shape the conditions under which AIs transition between exhaustive logical processing and the use of cognitive shortcuts (heuristics). We provide evidence that AIs manifest an adaptive balancing of precision and efficiency, consistent with principles of resource-rational human cognition as explicated in classical theories of bounded rationality and dual-process theory. Our findings reveal a nuanced picture of AI cognition, where trade-offs between resources and objectives lead to the emulation of biological systems, especially human cognition, despite AIs being designed without a sense of self and lacking introspective capabilities.
Related papers
- Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence [0.0]
The pursuit of creating artificial intelligence mirrors our longstanding fascination with understanding our own intelligence.
Recent advances in AI hold promise, but singular approaches often fall short in capturing the essence of intelligence.
This paper explores how fundamental principles from biological computation can guide the design of truly intelligent systems.
arXiv Detail & Related papers (2024-11-22T02:55:39Z) - The Trap of Presumed Equivalence: Artificial General Intelligence Should Not Be Assessed on the Scale of Human Intelligence [0.0]
A traditional approach to assessing emerging intelligence in the theory of intelligent systems is based on the similarity, "imitation" of human-like actions and behaviors.
We argue that under some natural assumptions, developing intelligent systems will be able to form their own intents and objectives.
arXiv Detail & Related papers (2024-10-14T13:39:58Z) - The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures [0.0]
The OpenAI-o1 model is a transformer-based AI trained with reinforcement learning from human feedback.
We investigate how RLHF influences the model's internal reasoning processes, potentially giving rise to consciousness-like experiences.
Our findings suggest that the OpenAI-o1 model shows aspects of consciousness, while acknowledging the ongoing debates surrounding AI sentience.
arXiv Detail & Related papers (2024-09-18T06:06:13Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
We focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment.
We present a collection of methods in AI for researchers to build AI systems inspired by cognitive science.
arXiv Detail & Related papers (2023-10-13T01:21:55Z) - Why we need biased AI -- How including cognitive and ethical machine
biases can enhance AI systems [0.0]
We argue for the structurewise implementation of human cognitive biases in learning algorithms.
In order to achieve ethical machine behavior, filter mechanisms have to be applied.
This paper is the first tentative step to explicitly pursue the idea of a re-evaluation of the ethical significance of machine biases.
arXiv Detail & Related papers (2022-03-18T12:39:35Z) - Automated Machine Learning, Bounded Rationality, and Rational
Metareasoning [62.997667081978825]
We will look at automated machine learning (AutoML) and related problems from the perspective of bounded rationality.
Taking actions under bounded resources requires an agent to reflect on how to use these resources in an optimal way.
arXiv Detail & Related papers (2021-09-10T09:10:20Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.