Optimizing the Electrical Interface for Large-Scale Color-Center Quantum Processors
- URL: http://arxiv.org/abs/2403.09526v2
- Date: Thu, 21 Mar 2024 09:37:13 GMT
- Title: Optimizing the Electrical Interface for Large-Scale Color-Center Quantum Processors
- Authors: Luc Enthoven, Masoud Babaie, Fabio Sebastiano,
- Abstract summary: Quantum processors based on color centers in diamond are promising candidates for future large-scale quantum computers.
The electrical interface required to control and read out such qubits may limit both the performance of the whole system and its scalability.
This work investigates how to efficiently implement the electronic controller in a scalable architecture comprising a large number of identical unit cells.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum processors based on color centers in diamond are promising candidates for future large-scale quantum computers thanks to their flexible optical interface, (relatively) high operating temperature, and high-fidelity operation. Similar to other quantum-computing platforms, the electrical interface required to control and read out such qubits may limit both the performance of the whole system and its scalability. To address this challenge, this work analyzes the requirements of the electrical interface and investigates how to efficiently implement the electronic controller in a scalable architecture comprising a large number of identical unit cells. Among the different discussed functionalities, a specific focus is devoted to the generation of the static and dynamic magnetic fields driving the electron and nuclear spins, because of their major impact on fidelity and scalability. Following the derived requirements, different system architectures, such as a qubit frequency-multiplexing scheme, are considered to identify the most power efficient approach, especially in the presence of inhomogeneity of the qubit Larmor frequency across the processor. As a result, a non-frequency-multiplexed, 1-mm$^2$ unit-cell architecture is proposed as the optimal solution, able to address up to one electron-spin qubit and 9 nuclear-spin qubits within a 3-mW average power consumption, thus establishing the baseline for the scalable electrical interface for future large-scale color-center quantum computers.
Related papers
- Scalable Quantum Computing with Optical Links [0.0]
Quantum computers have great potential to solve problems intractable on classical computers.
Quantum processors have not yet reached the required scale to run applications which outperform traditional computers.
Leading hardware platforms, such as superconducting qubit based processors, will soon become bottlenecked by the physical constraints of their low temperature environments.
arXiv Detail & Related papers (2025-05-01T14:09:32Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials [0.0]
In principle there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register.
Here we propose a holistic, scalable architecture for quantum computing with large ion-crystals.
We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells.
arXiv Detail & Related papers (2023-11-02T12:06:49Z) - Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures [2.465579331213113]
We present a pioneering characterization of the era of monolithic-temporal inter-core qubit traffic in large-scale circuits.
The programs are executed on an all-to-all connected-core architecture that supports up to around 1000 qubits.
Based on the showcased results, we provide a set of guidelines to improve mapping quantum circuits to multi-core processors, and lay the foundations of benchmarking large-scale multi-core architectures.
arXiv Detail & Related papers (2023-10-03T09:54:41Z) - Exploration of superconducting multi-mode cavity architectures for
quantum computing [44.99833362998488]
Superconducting radio-frequency (SRF) cavities coupled to transmon circuits have proven to be a promising platform for building high-coherence quantum information processors.
This paper presents the design optimization process of a multi-cell SRF cavity to perform quantum computation.
arXiv Detail & Related papers (2023-08-22T19:02:23Z) - The SpinBus Architecture: Scaling Spin Qubits with Electron Shuttling [42.60602838972598]
We introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence.
Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits.
arXiv Detail & Related papers (2023-06-28T16:24:11Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Electric-Field Programmable Spin Arrays for Scalable Quantum Repeaters [0.0]
We propose a quantum repeater architecture based on densely-packed diamond color centers (CCs) in a programmable electrode array.
This 'electric-field programmable spin array' (eFPSA) enables high-speed spin control of individual CCs with low cross-talk and power dissipation.
arXiv Detail & Related papers (2022-04-14T15:54:41Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
We use current quantum hardware and error mitigation protocols to calculate response functions for a highly simplified nuclear model.
In this work we use current quantum hardware and error mitigation protocols to calculate response functions for a modified Fermi-Hubbard model in two dimensions with three distinguishable nucleons on four lattice sites.
arXiv Detail & Related papers (2021-11-04T16:25:33Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Integrated optical multi-ion quantum logic [4.771545115836015]
Planar-fabricated optics integrated within ion trap devices can make such systems simultaneously more robust and parallelizable.
We use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates.
Similar devices may also find applications in neutral atom and ion-based quantum-sensing and timekeeping.
arXiv Detail & Related papers (2020-02-06T13:52:01Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.