Iterative Forgetting: Online Data Stream Regression Using Database-Inspired Adaptive Granulation
- URL: http://arxiv.org/abs/2403.09588v1
- Date: Thu, 14 Mar 2024 17:26:00 GMT
- Title: Iterative Forgetting: Online Data Stream Regression Using Database-Inspired Adaptive Granulation
- Authors: Niket Kathiriya, Hossein Haeri, Cindy Chen, Kshitij Jerath,
- Abstract summary: We present a database-inspired datastream regression model that uses inspiration from R*-trees to create granules from incoming datastreams.
Experiments demonstrate that the ability of this method to discard data produces a significant order-of-magnitude improvement in latency and training time.
- Score: 1.6874375111244329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many modern systems, such as financial, transportation, and telecommunications systems, are time-sensitive in the sense that they demand low-latency predictions for real-time decision-making. Such systems often have to contend with continuous unbounded data streams as well as concept drift, which are challenging requirements that traditional regression techniques are unable to cater to. There exists a need to create novel data stream regression methods that can handle these scenarios. We present a database-inspired datastream regression model that (a) uses inspiration from R*-trees to create granules from incoming datastreams such that relevant information is retained, (b) iteratively forgets granules whose information is deemed to be outdated, thus maintaining a list of only recent, relevant granules, and (c) uses the recent data and granules to provide low-latency predictions. The R*-tree-inspired approach also makes the algorithm amenable to integration with database systems. Our experiments demonstrate that the ability of this method to discard data produces a significant order-of-magnitude improvement in latency and training time when evaluated against the most accurate state-of-the-art algorithms, while the R*-tree-inspired granulation technique provides competitively accurate predictions
Related papers
- A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation [0.562479170374811]
In many real-world applications, continuous machine learning (ML) systems are crucial but prone to data drift.
Traditional drift adaptation methods typically update models using ensemble techniques, often discarding drifted historical data.
We contend that explicitly incorporating drifted data into the model training process significantly enhances model accuracy and robustness.
arXiv Detail & Related papers (2024-11-23T17:35:23Z) - RPS: A Generic Reservoir Patterns Sampler [1.09784964592609]
We introduce an approach that harnesses a weighted reservoir to facilitate direct pattern sampling from streaming batch data.
We present a generic algorithm capable of addressing temporal biases and handling various pattern types, including sequential, weighted, and unweighted itemsets.
arXiv Detail & Related papers (2024-10-31T16:25:21Z) - An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
Deep generative learning uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data.
In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models.
We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data.
arXiv Detail & Related papers (2024-10-24T18:15:48Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
We introduce a conditional diffusion framework called C$2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information.
Our experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-18T11:59:04Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
We present a data-driven approach to automatically extract an appropriate model structure from experimentally observed processes.
We demonstrate our approach on a simple benchmark problem, where it beats the state of the art meta-learning techniques.
arXiv Detail & Related papers (2021-10-07T18:23:14Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
We propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) for time-varying confounding in longitudinal data.
DeepRite is shown to recover the ground truth from synthetic data, and estimate unbiased treatment effects from real data.
arXiv Detail & Related papers (2020-10-28T15:05:08Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.