Efficient Event-Based Object Detection: A Hybrid Neural Network with Spatial and Temporal Attention
- URL: http://arxiv.org/abs/2403.10173v3
- Date: Tue, 11 Mar 2025 18:54:44 GMT
- Title: Efficient Event-Based Object Detection: A Hybrid Neural Network with Spatial and Temporal Attention
- Authors: Soikat Hasan Ahmed, Jan Finkbeiner, Emre Neftci,
- Abstract summary: Spiking Neural Networks (SNNs) on neuromorphic hardware are often considered for energy-efficient and low latency event-based data processing.<n>Here, we introduce Attention-based Hybrid SNN-ANN backbones for event-based object detection.
- Score: 2.5075774828443467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for robust object detection. While Spiking Neural Networks (SNNs) on neuromorphic hardware are often considered for energy-efficient and low latency event-based data processing, they often fall short of Artificial Neural Networks (ANNs) in accuracy and flexibility. Here, we introduce Attention-based Hybrid SNN-ANN backbones for event-based object detection to leverage the strengths of both SNN and ANN architectures. A novel Attention-based SNN-ANN bridge module captures sparse spatial and temporal relations from the SNN layer and converts them into dense feature maps for the ANN part of the backbone. Additionally, we present a variant that integrates DWConvL-STMs to the ANN blocks to capture slower dynamics. This multi-timescale network combines fast SNN processing for short timesteps with long-term dense RNN processing, effectively capturing both fast and slow dynamics. Experimental results demonstrate that our proposed method surpasses SNN-based approaches by significant margins, with results comparable to existing ANN and RNN-based methods. Unlike ANN-only networks, the hybrid setup allows us to implement the SNN blocks on digital neuromorphic hardware to investigate the feasibility of our approach. Extensive ablation studies and implementation on neuromorphic hardware confirm the effectiveness of our proposed modules and architectural choices. Our hybrid SNN-ANN architectures pave the way for ANN-like performance at a drastically reduced parameter, latency, and power budget.
Related papers
- ReSpike: Residual Frames-based Hybrid Spiking Neural Networks for Efficient Action Recognition [26.7175155847563]
Spiking Neural Networks (SNNs) have emerged as a compelling, energy-efficient alternative to traditional Artificial Neural Networks (ANNs)
We propose ReSpike, a hybrid framework that synergizes the strengths of ANNs and SNNs to tackle action recognition tasks with high accuracy and low energy cost.
arXiv Detail & Related papers (2024-09-03T03:01:25Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - Towards Efficient Deployment of Hybrid SNNs on Neuromorphic and Edge AI Hardware [0.493599216374976]
This paper explores the synergistic potential of neuromorphic and edge computing to create a versatile machine learning (ML) system tailored for processing data captured by dynamic vision sensors.
We construct and train hybrid models, blending spiking neural networks (SNNs) and artificial neural networks (ANNs) using PyTorch and Lava frameworks.
arXiv Detail & Related papers (2024-07-11T17:40:39Z) - Highly Efficient SNNs for High-speed Object Detection [7.3074002563489024]
Experimental results show that our efficient SNN can achieve 118X speedup on GPU with only 1.5MB parameters for object detection tasks.
We further verify our SNN on FPGA platform and the proposed model can achieve 800+FPS object detection with extremely low latency.
arXiv Detail & Related papers (2023-09-27T10:31:12Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - SpikeSim: An end-to-end Compute-in-Memory Hardware Evaluation Tool for
Benchmarking Spiking Neural Networks [4.0300632886917]
SpikeSim is a tool that can perform realistic performance, energy, latency and area evaluation of IMC-mapped SNNs.
We propose SNN topological modifications leading to 1.24x and 10x reduction in the neuronal module's area and the overall energy-delay-product value.
arXiv Detail & Related papers (2022-10-24T01:07:17Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
Spiking neural networks are efficient computation models for low-power environments.
We propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way.
Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets.
arXiv Detail & Related papers (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Beyond Classification: Directly Training Spiking Neural Networks for
Semantic Segmentation [5.800785186389827]
Spiking Neural Networks (SNNs) have emerged as the low-power alternative to Artificial Neural Networks (ANNs)
In this paper, we explore the SNN applications beyond classification and present semantic segmentation networks configured with spiking neurons.
arXiv Detail & Related papers (2021-10-14T21:53:03Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013, VOT2016, and GOT-10k.
SiamSNN notably achieves low energy consumption and real-time on Neuromorphic chip TrueNorth.
arXiv Detail & Related papers (2020-03-17T08:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.