Interpretable Machine Learning for Survival Analysis
- URL: http://arxiv.org/abs/2403.10250v2
- Date: Mon, 18 Nov 2024 10:06:01 GMT
- Title: Interpretable Machine Learning for Survival Analysis
- Authors: Sophie Hanna Langbein, Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek, Marvin N. Wright,
- Abstract summary: interpretable machine learning (IML) or explainable artificial intelligence (XAI) has become increasingly important over the last decade.
Lack of readily available IML methods may have deterred medical practitioners and policy makers in public health from leveraging the full potential of machine learning.
We present a review of the limited existing amount of work on IML methods for survival analysis within the context of the general IML taxonomy.
- Score: 3.618561939712435
- License:
- Abstract: With the spread and rapid advancement of black box machine learning models, the field of interpretable machine learning (IML) or explainable artificial intelligence (XAI) has become increasingly important over the last decade. This is particularly relevant for survival analysis, where the adoption of IML techniques promotes transparency, accountability and fairness in sensitive areas, such as clinical decision making processes, the development of targeted therapies, interventions or in other medical or healthcare related contexts. More specifically, explainability can uncover a survival model's potential biases and limitations and provide more mathematically sound ways to understand how and which features are influential for prediction or constitute risk factors. However, the lack of readily available IML methods may have deterred medical practitioners and policy makers in public health from leveraging the full potential of machine learning for predicting time-to-event data. We present a comprehensive review of the limited existing amount of work on IML methods for survival analysis within the context of the general IML taxonomy. In addition, we formally detail how commonly used IML methods, such as such as individual conditional expectation (ICE), partial dependence plots (PDP), accumulated local effects (ALE), different feature importance measures or Friedman's H-interaction statistics can be adapted to survival outcomes. An application of several IML methods to real data on data on under-5 year mortality of Ghanaian children from the Demographic and Health Surveys (DHS) Program serves as a tutorial or guide for researchers, on how to utilize the techniques in practice to facilitate understanding of model decisions or predictions.
Related papers
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data.
RF models demonstrate robust performance in handling high-dimensional data.
CNNs have shown exceptional accuracy in cancer detection.
LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration.
arXiv Detail & Related papers (2024-08-05T09:41:34Z) - LLMs-based Few-Shot Disease Predictions using EHR: A Novel Approach Combining Predictive Agent Reasoning and Critical Agent Instruction [38.11497959553319]
We investigate the feasibility of applying Large Language Models to convert structured patient visit data into natural language narratives.
We evaluate the zero-shot and few-shot performance of LLMs using various EHR-prediction-oriented prompting strategies.
Our results demonstrate that with the proposed approach, LLMs can achieve decent few-shot performance compared to traditional supervised learning methods in EHR-based disease predictions.
arXiv Detail & Related papers (2024-03-19T18:10:13Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Clinical Risk Prediction Using Language Models: Benefits And
Considerations [23.781690889237794]
This study focuses on using structured descriptions within vocabularies to make predictions exclusively based on that information.
We find that employing LMs to represent structured EHRs leads to improved or at least comparable performance in diverse risk prediction tasks.
arXiv Detail & Related papers (2023-11-29T04:32:19Z) - Interpretable machine learning for time-to-event prediction in medicine and healthcare [7.416913210816592]
We introduce time-dependent feature effects and global feature importance explanations.
We show how post-hoc interpretation methods allow for finding biases in AI systems predicting length of stay.
We evaluate cancer survival models beyond predictive performance to include the importance of multi-omics feature groups.
arXiv Detail & Related papers (2023-03-17T07:53:18Z) - Interpretability from a new lens: Integrating Stratification and Domain
knowledge for Biomedical Applications [0.0]
This paper proposes a novel computational strategy for the stratification of biomedical problem datasets into k-fold cross-validation (CVs)
This approach can improve model stability, establish trust, and provide explanations for outcomes generated by trained IML models.
arXiv Detail & Related papers (2023-03-15T12:02:02Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.