LLMs-based Few-Shot Disease Predictions using EHR: A Novel Approach Combining Predictive Agent Reasoning and Critical Agent Instruction
- URL: http://arxiv.org/abs/2403.15464v1
- Date: Tue, 19 Mar 2024 18:10:13 GMT
- Title: LLMs-based Few-Shot Disease Predictions using EHR: A Novel Approach Combining Predictive Agent Reasoning and Critical Agent Instruction
- Authors: Hejie Cui, Zhuocheng Shen, Jieyu Zhang, Hui Shao, Lianhui Qin, Joyce C. Ho, Carl Yang,
- Abstract summary: We investigate the feasibility of applying Large Language Models to convert structured patient visit data into natural language narratives.
We evaluate the zero-shot and few-shot performance of LLMs using various EHR-prediction-oriented prompting strategies.
Our results demonstrate that with the proposed approach, LLMs can achieve decent few-shot performance compared to traditional supervised learning methods in EHR-based disease predictions.
- Score: 38.11497959553319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic health records (EHRs) contain valuable patient data for health-related prediction tasks, such as disease prediction. Traditional approaches rely on supervised learning methods that require large labeled datasets, which can be expensive and challenging to obtain. In this study, we investigate the feasibility of applying Large Language Models (LLMs) to convert structured patient visit data (e.g., diagnoses, labs, prescriptions) into natural language narratives. We evaluate the zero-shot and few-shot performance of LLMs using various EHR-prediction-oriented prompting strategies. Furthermore, we propose a novel approach that utilizes LLM agents with different roles: a predictor agent that makes predictions and generates reasoning processes and a critic agent that analyzes incorrect predictions and provides guidance for improving the reasoning of the predictor agent. Our results demonstrate that with the proposed approach, LLMs can achieve decent few-shot performance compared to traditional supervised learning methods in EHR-based disease predictions, suggesting its potential for health-oriented applications.
Related papers
- Enhancing Patient-Centric Communication: Leveraging LLMs to Simulate Patient Perspectives [19.462374723301792]
Large Language Models (LLMs) have demonstrated impressive capabilities in role-playing scenarios.
By mimicking human behavior, LLMs can anticipate responses based on concrete demographic or professional profiles.
We evaluate the effectiveness of LLMs in simulating individuals with diverse backgrounds and analyze the consistency of these simulated behaviors.
arXiv Detail & Related papers (2025-01-12T22:49:32Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - IntelliCare: Improving Healthcare Analysis with Variance-Controlled Patient-Level Knowledge from Large Language Models [14.709233593021281]
The integration of external knowledge from Large Language Models (LLMs) presents a promising avenue for improving healthcare predictions.
We propose IntelliCare, a novel framework that leverages LLMs to provide high-quality patient-level external knowledge.
IntelliCare identifies patient cohorts and employs task-relevant statistical information to augment LLM understanding and generation.
arXiv Detail & Related papers (2024-08-23T13:56:00Z) - Augmented Risk Prediction for the Onset of Alzheimer's Disease from Electronic Health Records with Large Language Models [42.676566166835585]
Alzheimer's disease (AD) is the fifth-leading cause of death among Americans aged 65 and older.
Recent advancements in large language models (LLMs) offer strong potential for enhancing risk prediction.
This paper proposes a novel pipeline that augments risk prediction by leveraging the few-shot inference power of LLMs.
arXiv Detail & Related papers (2024-05-26T03:05:10Z) - Chain-of-Thought Prompting for Demographic Inference with Large Multimodal Models [58.58594658683919]
Large multimodal models (LMMs) have shown transformative potential across various research tasks.
Our findings indicate LMMs possess advantages in zero-shot learning, interpretability, and handling uncurated 'in-the-wild' inputs.
We propose a Chain-of-Thought augmented prompting approach, which effectively mitigates the off-target prediction issue.
arXiv Detail & Related papers (2024-05-24T16:26:56Z) - Clinical Risk Prediction Using Language Models: Benefits And
Considerations [23.781690889237794]
This study focuses on using structured descriptions within vocabularies to make predictions exclusively based on that information.
We find that employing LMs to represent structured EHRs leads to improved or at least comparable performance in diverse risk prediction tasks.
arXiv Detail & Related papers (2023-11-29T04:32:19Z) - CPLLM: Clinical Prediction with Large Language Models [0.07083082555458872]
We present a method that involves fine-tuning a pre-trained Large Language Model (LLM) for clinical disease and readmission prediction.
For diagnosis prediction, we predict whether patients will be diagnosed with a target disease during their next visit or in the subsequent diagnosis, leveraging their historical diagnosis records.
Our experiments have shown that our proposed method, CPLLM, surpasses all the tested models in terms of PR-AUC and ROC-AUC metrics.
arXiv Detail & Related papers (2023-09-20T13:24:12Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.