論文の概要: Low-density parity-check representation of fault-tolerant quantum circuits
- arxiv url: http://arxiv.org/abs/2403.10268v1
- Date: Fri, 15 Mar 2024 12:56:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:11:11.114943
- Title: Low-density parity-check representation of fault-tolerant quantum circuits
- Title(参考訳): フォールトトレラント量子回路の低密度パリティチェック表現
- Authors: Ying Li,
- Abstract要約: 本稿では,フォールトトレラント量子回路の設計と解析を行うツールキットを提案する。
古典的低密度パリティチェック符号を用いて安定化回路を表現するためのフレームワークを提案する。
タナーグラフ記法を用いて回路からLDPCコードを生成する手順について概説する。
- 参考スコア(独自算出の注目度): 5.064729356056529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In fault-tolerant quantum computing, quantum algorithms are implemented through quantum circuits capable of error correction. These circuits are typically constructed based on specific quantum error correction codes, with consideration given to the characteristics of the underlying physical platforms. Optimising these circuits within the constraints of today's quantum computing technologies, particularly in terms of error rates, qubit counts, and network topologies, holds substantial implications for the feasibility of quantum applications in the near future. This paper presents a toolkit for designing and analysing fault-tolerant quantum circuits. We introduce a framework for representing stabiliser circuits using classical low-density parity-check (LDPC) codes. Each codeword in the representation corresponds to a quantum-mechanical equation regarding the circuit, formalising the correlations utilised in parity checks and delineating logical operations within the circuit. Consequently, the LDPC code provides a means of quantifying fault tolerance and verifying logical operations. We outline the procedure for generating LDPC codes from circuits using the Tanner graph notation, alongside proposing graph-theory tools for constructing fault-tolerant quantum circuits from classical LDPC codes. These findings offer a systematic approach to applying classical error correction techniques in optimising existing fault-tolerant protocols and developing new ones.
- Abstract(参考訳): フォールトトレラント量子コンピューティングでは、量子アルゴリズムは誤り訂正が可能な量子回路によって実装される。
これらの回路は通常、基礎となる物理プラットフォームの特性を考慮して、特定の量子誤り訂正符号に基づいて構築される。
これらの回路を今日の量子コンピューティング技術の制約(特にエラー率、量子ビット数、ネットワークトポロジー)の中で最適化することは、近い将来の量子アプリケーションの実現可能性に重大な影響を与える。
本稿では,フォールトトレラント量子回路の設計と解析を行うツールキットを提案する。
古典的低密度パリティチェック(LDPC)符号を用いて安定化回路を表現するためのフレームワークを提案する。
表現中の各コードワードは回路に関する量子力学方程式に対応し、パリティチェックで使用される相関関係を定式化し、回路内の論理演算を記述する。
その結果、LDPCコードはフォールトトレランスを定量化し、論理演算を検証する手段を提供する。
本稿では,従来のLDPC符号からフォールトトレラント量子回路を構築するためのグラフ理論ツールの提案とともに,タナーグラフ記法を用いて回路からLDPC符号を生成する手順について概説する。
これらの知見は,既存のフォールトトレラントプロトコルを最適化し,新しいプロトコルを開発する上で,古典的誤り訂正手法を適用するための体系的なアプローチを提供する。
関連論文リスト
- Polylog-time- and constant-space-overhead fault-tolerant quantum computation with quantum low-density parity-check codes [2.048226951354646]
フォールトトレラント量子計算における大きな課題は、空間オーバーヘッドと時間オーバーヘッドの両方を削減することである。
本研究では, 量子低密度パリティチェック符号を用いたプロトコルが, 一定の空間オーバーヘッドと多対数時間オーバーヘッドを実現することを示す。
論文 参考訳(メタデータ) (2024-11-06T06:06:36Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
本研究では,幅広い種類の量子コードに対して,一定の時間オーバーヘッドでフォールトトレラントな論理演算を実行できることを示す。
理想的な測定結果分布からの偏差をコード距離で指数関数的に小さくできることを示す。
我々の研究は、フォールトトレランスの理論に新たな光を当て、実用的なフォールトトレラント量子計算の時空間コストを桁違いに削減する可能性がある。
論文 参考訳(メタデータ) (2024-06-25T15:43:25Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning [1.1891349121931318]
本稿では,コンパクトかつハードウェア対応のフォールトトレラント量子回路を自動検出する強化学習を提案する。
耐故障性論理状態作成のタスクにおいて、RLは最大15個の物理量子ビットのハードウェア制約を伴わない結果よりも、ゲートと補助量子ビットの少ない回路を発見する。
論文 参考訳(メタデータ) (2024-02-27T18:55:13Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
ブラインド量子計算(Blind Quantum Computation、BQC)は、クライアントが望まれる量子計算を実装するためにリモート量子サーバをレンタルするプロトコルである。
本稿では,量子誤り訂正符号を用いたフォールトトレラントブラインド量子計算プロトコルを提案する。
論文 参考訳(メタデータ) (2023-01-05T08:52:55Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
本稿では,プラットフォームに依存しない論理ゲート定義の必要性から,普遍的なフォールトトレラント論理の枠組みを提案する。
資源オーバーヘッドを改善するユニバーサル論理の新しいスキームについて検討する。
境界のない計算に好適な論理誤差率を動機として,新しい計算手法を提案する。
論文 参考訳(メタデータ) (2021-12-22T19:00:03Z) - Fundamental thresholds of realistic quantum error correction circuits
from classical spin models [0.0]
モンテカルロシミュレーションを用いて、関連する相互作用スピンモデルの位相図を解析する。
提案手法は,特定の復号化戦略とは無関係に,QEC符号と関連する読み出し回路の基本しきい値を評価するための手段を提供する。
論文 参考訳(メタデータ) (2021-04-10T19:26:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。