論文の概要: Computational characteristics of feedforward neural networks for solving
a stiff differential equation
- arxiv url: http://arxiv.org/abs/2012.01867v2
- Date: Tue, 30 Nov 2021 14:14:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-22 05:37:52.031607
- Title: Computational characteristics of feedforward neural networks for solving
a stiff differential equation
- Title(参考訳): 剛性微分方程式を解くためのフィードフォワードニューラルネットワークの計算特性
- Authors: Toni Schneidereit and Michael Breu{\ss}
- Abstract要約: 減衰系をモデル化する単純だが基本的な常微分方程式の解について検討する。
パラメータやメソッドに対して好適な選択を特定できることを示す。
全体として、ニューラルネットワークアプローチによる信頼性と正確な結果を得るために何ができるかを示すことで、この分野の現在の文献を拡張します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feedforward neural networks offer a promising approach for solving
differential equations. However, the reliability and accuracy of the
approximation still represent delicate issues that are not fully resolved in
the current literature. Computational approaches are in general highly
dependent on a variety of computational parameters as well as on the choice of
optimisation methods, a point that has to be seen together with the structure
of the cost function. The intention of this paper is to make a step towards
resolving these open issues. To this end we study here the solution of a simple
but fundamental stiff ordinary differential equation modelling a damped system.
We consider two computational approaches for solving differential equations by
neural forms. These are the classic but still actual method of trial solutions
defining the cost function, and a recent direct construction of the cost
function related to the trial solution method. Let us note that the settings we
study can easily be applied more generally, including solution of partial
differential equations. By a very detailed computational study we show that it
is possible to identify preferable choices to be made for parameters and
methods. We also illuminate some interesting effects that are observable in the
neural network simulations. Overall we extend the current literature in the
field by showing what can be done in order to obtain reliable and accurate
results by the neural network approach. By doing this we illustrate the
importance of a careful choice of the computational setup.
- Abstract(参考訳): フィードフォワードニューラルネットワークは微分方程式を解くための有望なアプローチを提供する。
しかし、この近似の信頼性と精度は、現在の文献では完全に解決されていない繊細な問題である。
計算的アプローチは一般に、様々な計算パラメータと最適化方法の選択に大きく依存するが、これはコスト関数の構造とともに見なければならない点である。
本稿の目的は、これらのオープンな問題を解決するための一歩を踏み出すことである。
この目的のために, 減衰系をモデル化する単純かつ基本的な剛常微分方程式の解法について検討する。
ニューラルフォームによる微分方程式の解法を2つの計算手法で検討する。
これらは、コスト関数を定義する古典的かつ実際の試行法であり、最近の試行法に関連するコスト関数の直接構築である。
偏微分方程式の解を含む、我々が研究している設定はより一般に適用可能であることに留意しよう。
非常に詳細な計算研究により、パラメータやメソッドに適した選択を識別できることが示されている。
また、ニューラルネットワークのシミュレーションで観察できる興味深い効果を照明します。
全体として、ニューラルネットワークアプローチによる信頼性と正確な結果を得るために何ができるかを示すことで、この分野の現在の文献を拡張します。
これにより、計算設定を慎重に選択することの重要性が説明される。
関連論文リスト
- Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Adaptive neural domain refinement for solving time-dependent
differential equations [0.0]
ニューラルネットワークを用いた微分方程式の古典的な解法は、解領域の離散化を伴う微分方程式を用いるニューラルネットワーク形式に基づいている。
このような重要かつ成功した戦略を、ニューラルネットワークベースのソリューションの分野に移行することが望ましい。
本稿では,時間依存問題の解決を目的とした新しい適応型ニューラルアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-23T13:19:07Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
線形微分方程式と非線形微分方程式の両方における様々なニューラルネットワークアーキテクチャの性能と精度について検討する。
我々は、微分方程式の解を予測するために、新しいレジェンダ-ガレルキンディープニューラルネットワーク(LGNet)アルゴリズムを実装した。
論文 参考訳(メタデータ) (2020-10-24T20:25:09Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
本研究では,教師なしニューラルネットワークを用いた微分方程式の解法を開発した。
差分方程式GAN (DEQGAN) と呼ばれる手法は, 平均二乗誤差を桁違いに低減できることを示す。
論文 参考訳(メタデータ) (2020-07-21T23:36:36Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。