論文の概要: From Words to Routes: Applying Large Language Models to Vehicle Routing
- arxiv url: http://arxiv.org/abs/2403.10795v1
- Date: Sat, 16 Mar 2024 03:54:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 21:45:00.592838
- Title: From Words to Routes: Applying Large Language Models to Vehicle Routing
- Title(参考訳): 単語からルートへ:大規模言語モデルの適用から自動車ルーティング
- Authors: Zhehui Huang, Guangyao Shi, Gaurav S. Sukhatme,
- Abstract要約: LLMの自然言語タスク記述による車両ルーティング問題の解決能力はどのようなものか?
我々は21種類の単車/多車間ルーティング問題を持つデータセットを構築した。
テキスト・ツー・コード生成の4つの基本的パラダイムにまたがるLCMの性能を評価する。
- 参考スコア(独自算出の注目度): 13.672207504142456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LLMs have shown impressive progress in robotics (e.g., manipulation and navigation) with natural language task descriptions. The success of LLMs in these tasks leads us to wonder: What is the ability of LLMs to solve vehicle routing problems (VRPs) with natural language task descriptions? In this work, we study this question in three steps. First, we construct a dataset with 21 types of single- or multi-vehicle routing problems. Second, we evaluate the performance of LLMs across four basic prompt paradigms of text-to-code generation, each involving different types of text input. We find that the basic prompt paradigm, which generates code directly from natural language task descriptions, performs the best for GPT-4, achieving 56% feasibility, 40% optimality, and 53% efficiency. Third, based on the observation that LLMs may not be able to provide correct solutions at the initial attempt, we propose a framework that enables LLMs to refine solutions through self-reflection, including self-debugging and self-verification. With GPT-4, our proposed framework achieves a 16% increase in feasibility, a 7% increase in optimality, and a 15% increase in efficiency. Moreover, we examine the sensitivity of GPT-4 to task descriptions, specifically focusing on how its performance changes when certain details are omitted from the task descriptions, yet the core meaning is preserved. Our findings reveal that such omissions lead to a notable decrease in performance: 4% in feasibility, 4% in optimality, and 5% in efficiency. Website: https://sites.google.com/view/words-to-routes/
- Abstract(参考訳): LLMは、自然言語によるタスク記述を備えたロボット工学(例えば、操作とナビゲーション)において、驚くべき進歩を見せている。
LLMが自然言語タスク記述で車載ルーティング問題(VRP)を解決する能力は何なのだろうか?
本研究では,この問題を3つのステップで研究する。
まず、21種類の単車または複数車種のルーティング問題を持つデータセットを構築する。
第2に、テキスト・コード生成の4つの基本的プロンプトパラダイムにおけるLCMの性能を評価し、それぞれ異なるタイプのテキスト入力を含む。
自然言語のタスク記述から直接コードを生成する基本的プロンプトパラダイムは,56%の実現可能性,40%の最適性,53%の効率を達成し,GPT-4に最適であることがわかった。
第3に,LSMが最初の試みで正しいソリューションを提供できないという観測に基づいて,自己デバッグや自己検証を含む自己回帰によるソリューションの洗練を可能にするフレームワークを提案する。
GPT-4では,提案手法は実現可能性の16%,最適性は7%,効率は15%向上する。
さらに,タスク記述に対する GPT-4 の感度について検討し,タスク記述から特定の詳細が省略された場合のパフォーマンスがどう変化するかに注目した。
以上の結果から, 有効性は4%, 最適性は4%, 効率は5%であった。
Webサイト: https://sites.google.com/view/words-to-routes/
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths [69.39559168050923]
本稿では,多様な経路から学習の推論と探索を可能にするReasoning Paths Optimization (RPO)を紹介する。
提案手法は,各推論ステップにおいて好意的な分岐を奨励し,好ましくない分岐を罰し,モデル全体の問題解決性能を高める。
我々は,数語問題や理科ベースの試験問題など,多段階の推論タスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-10-07T06:37:25Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - ConvNLP: Image-based AI Text Detection [1.4419517737536705]
本稿では,単語埋め込みの視覚的表現を用いたAI生成テキストの検出手法を提案する。
我々は、ZigZag ResNetと呼ばれる新しい畳み込みニューラルネットワークと、ZigZag Schedulerと呼ばれる一般化を改善するスケジューラを定式化した。
我々の最良のモデルは、AI生成テキストを印象的な平均検出率(ドメイン間およびドメイン内テストデータ以上)88.35%で検出する。
論文 参考訳(メタデータ) (2024-07-09T20:44:40Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Understanding the Weakness of Large Language Model Agents within a
Complex Android Environment [21.278266207772756]
大規模言語モデル(LLM)は、ブラウザやゲームのようなドメイン固有のソフトウェア内で複雑なタスクを実行するインテリジェントエージェントに権限を与えている。
LLMはオペレーティングシステムのような汎用ソフトウェアシステムに適用する際の3つの主要な課題に直面している。
これらの課題は、現代的なオペレーティングシステム上でLLMエージェントを評価するために設計された環境とベンチマークであるAndroidArenaを動機付けている。
論文 参考訳(メタデータ) (2024-02-09T18:19:25Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Contribution \`a l'Optimisation d'un Comportement Collectif pour un
Groupe de Robots Autonomes [0.0]
この論文は集団ロボット工学の分野、特にマルチロボットシステムの最適化問題を研究している。
最初の貢献は、未知領域探索問題の解決にButterfly Algorithm Optimization (BOA) を用いることである。
第2の貢献は、ロボット工学における動的増分問題をベンチマークするための新しいシミュレーションフレームワークの開発である。
論文 参考訳(メタデータ) (2023-06-10T21:49:08Z) - Light Unbalanced Optimal Transport [69.18220206873772]
理論的に最適化され、軽量で、バランスの取れないEOTソルバを提案する。
我々の進歩は、トラクタブルと非ミニマックス最適化の目的をもたらすUEOT問題の最適化に関する新しい視点の開発である。
我々は,この解法がUEOT解の普遍近似を提供し,一般化限界を得ることを示す。
論文 参考訳(メタデータ) (2023-03-14T15:44:40Z) - Robot Navigation in a Crowd by Integrating Deep Reinforcement Learning
and Online Planning [8.211771115758381]
これは、群衆の中で時間効率と衝突のない道を移動するモバイルロボットにとって、まだオープンで挑戦的な問題です。
深層強化学習はこの問題に対する有望な解決策である。
グラフに基づく深部強化学習手法SG-DQNを提案する。
私たちのモデルは、ロボットが群衆をよりよく理解し、群衆ナビゲーションタスクで0.99以上の高い成功率を達成するのに役立ちます。
論文 参考訳(メタデータ) (2021-02-26T02:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。