Can Large Language Models Solve Robot Routing?
- URL: http://arxiv.org/abs/2403.10795v2
- Date: Tue, 6 Aug 2024 21:14:23 GMT
- Title: Can Large Language Models Solve Robot Routing?
- Authors: Zhehui Huang, Guangyao Shi, Gaurav S. Sukhatme,
- Abstract summary: Large Language Models (LLMs) can replace the entire pipeline from tasks described in natural language to the generation of robot routes.
We construct a dataset with 80 unique robot routing problems across 8 variants in both single and multi-robot settings.
Our findings reveal that both self-ging and self-verification enhance success rates without significantly lowering the optimality gap.
- Score: 13.672207504142456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Routing problems are common in mobile robotics, encompassing tasks such as inspection, surveillance, and coverage. Depending on the objective and constraints, these problems often reduce to variants of the Traveling Salesman Problem (TSP), with solutions traditionally derived by translating high-level objectives into an optimization formulation and using modern solvers to arrive at a solution. Here, we explore the potential of Large Language Models (LLMs) to replace the entire pipeline from tasks described in natural language to the generation of robot routes. We systematically investigate the performance of LLMs in robot routing by constructing a dataset with 80 unique robot routing problems across 8 variants in both single and multi-robot settings. We evaluate LLMs through three frameworks: single attempt, self-debugging, and self-debugging with self-verification and various contexts, including mathematical formulations, pseudo-code, and related research papers. Our findings reveal that both self-debugging and self-verification enhance success rates without significantly lowering the optimality gap. We observe context-sensitive behavior - providing mathematical formulations as context decreases the optimality gap but significantly decreases success rates and providing pseudo-code and related research papers as context does not consistently improve success rates or decrease the optimality gap. We identify key challenges and propose future directions to enhance LLM performance in solving robot routing problems. Our source code is available on the project website: https://sites.google.com/view/words-to-routes/.
Related papers
- Action Flow Matching for Continual Robot Learning [57.698553219660376]
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks.
We introduce a generative framework leveraging flow matching for online robot dynamics model alignment.
We find that by transforming the actions themselves rather than exploring with a misaligned model, the robot collects informative data more efficiently.
arXiv Detail & Related papers (2025-04-25T16:26:15Z) - OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents [8.441638148384389]
We introduce textbfOptimAI, a framework for solving underlineOptimization problems described in natural language.
Our framework is built upon four key roles: (1) a emphformulator; (2) a emphplanner; and (3) a emphcoder and a emphcode critic.
Our approach attains 88.1% accuracy on the NLP4LP dataset and 71.2% on the Optibench subset, reducing error rates by 58% and 50% respectively over prior best results.
arXiv Detail & Related papers (2025-04-23T17:45:05Z) - OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problem with Reasoning Large Language Model [2.138587105340617]
Operations Research (OR) has been widely applied in various fields such as resource allocation, production planning, and supply chain management.
Traditional method, heavily reliant on experts, is costly and has long development cycles.
We propose OR-LLM-Agent, the first AI agent that enables end-to-end automation for solving real-world OR problems.
arXiv Detail & Related papers (2025-03-13T03:40:50Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths [69.39559168050923]
We introduce Reasoning Paths Optimization (RPO), which enables learning to reason and explore from diverse paths.
Our approach encourages favorable branches at each reasoning step while penalizing unfavorable ones, enhancing the model's overall problem-solving performance.
We focus on multi-step reasoning tasks, such as math word problems and science-based exam questions.
arXiv Detail & Related papers (2024-10-07T06:37:25Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Solving Robotics Problems in Zero-Shot with Vision-Language Models [0.0]
We introduce Wonderful Team, a multi-agent Vision Large Language Model (VLLM) framework designed to solve robotics problems in a zero-shot regime.
In our context, zero-shot means that for a novel environment, we provide a VLLM with an image of the robot's surroundings and a task description.
Our system showcases the ability to handle diverse tasks such as manipulation, goal-reaching, and visual reasoning -- all in a zero-shot manner.
arXiv Detail & Related papers (2024-07-26T21:18:57Z) - ConvNLP: Image-based AI Text Detection [1.4419517737536705]
This paper presents a novel approach for detecting AI-generated text using a visual representation of word embedding.
We have formulated a novel Convolutional Neural Network called ZigZag ResNet, as well as a scheduler for improving generalization, named ZigZag Scheduler.
Our best model detects AI-generated text with an impressive average detection rate (over inter- and intra-domain test data) of 88.35%.
arXiv Detail & Related papers (2024-07-09T20:44:40Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Understanding the Weakness of Large Language Model Agents within a
Complex Android Environment [21.278266207772756]
Large language models (LLMs) have empowered intelligent agents to execute intricate tasks within domain-specific software such as browsers and games.
LLMs face three primary challenges when applied to general-purpose software systems like operating systems.
These challenges motivate AndroidArena, an environment and benchmark designed to evaluate LLM agents on a modern operating system.
arXiv Detail & Related papers (2024-02-09T18:19:25Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Contribution \`a l'Optimisation d'un Comportement Collectif pour un
Groupe de Robots Autonomes [0.0]
This thesis studies the domain of collective robotics, and more particularly the optimization problems of multirobot systems.
The first contribution is the use of the Butterfly Algorithm Optimization (BOA) to solve the Unknown Area Exploration problem.
The second contribution is the development of a new simulation framework for benchmarking dynamic incremental problems in robotics.
arXiv Detail & Related papers (2023-06-10T21:49:08Z) - Light Unbalanced Optimal Transport [69.18220206873772]
Existing solvers are either based on principles or heavy-weighted with complex optimization objectives involving several neural networks.
We show that our solver provides a universal approximation of UEOT solutions and obtains its generalization bounds.
arXiv Detail & Related papers (2023-03-14T15:44:40Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
The goal is to maximize the sum-rate of whole trajectories for multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots.
An integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$3$QN) algorithm.
arXiv Detail & Related papers (2022-05-03T17:14:47Z) - Robot Navigation in a Crowd by Integrating Deep Reinforcement Learning
and Online Planning [8.211771115758381]
It is still an open and challenging problem for mobile robots navigating along time-efficient and collision-free paths in a crowd.
Deep reinforcement learning is a promising solution to this problem.
We propose a graph-based deep reinforcement learning method, SG-DQN.
Our model can help the robot better understand the crowd and achieve a high success rate of more than 0.99 in the crowd navigation task.
arXiv Detail & Related papers (2021-02-26T02:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.