Intelligent Railroad Grade Crossing: Leveraging Semantic Segmentation and Object Detection for Enhanced Safety
- URL: http://arxiv.org/abs/2403.11060v1
- Date: Sun, 17 Mar 2024 02:15:15 GMT
- Title: Intelligent Railroad Grade Crossing: Leveraging Semantic Segmentation and Object Detection for Enhanced Safety
- Authors: Al Amin, Deo Chimba, Kamrul Hasan, Emmanuel Samson,
- Abstract summary: Crashes and delays at Railroad Highway Grade Crossings (RHGC) pose significant safety concerns for the U.S. Federal Railroad Administration (FRA)
This study introduces an intelligent system that leverages machine learning and computer vision techniques to enhance safety at RHGC.
- Score: 0.11999555634662631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crashes and delays at Railroad Highway Grade Crossings (RHGC), where highways and railroads intersect, pose significant safety concerns for the U.S. Federal Railroad Administration (FRA). Despite the critical importance of addressing accidents and traffic delays at highway-railroad intersections, there is a notable dearth of research on practical solutions for managing these issues. In response to this gap in the literature, our study introduces an intelligent system that leverages machine learning and computer vision techniques to enhance safety at Railroad Highway Grade crossings (RHGC). This research proposed a Non-Maximum Suppression (NMS)- based ensemble model that integrates a variety of YOLO variants, specifically YOLOv5S, YOLOv5M, and YOLOv5L, for grade-crossing object detection, utilizes segmentation techniques from the UNet architecture for detecting approaching rail at a grade crossing. Both methods are implemented on a Raspberry Pi. Moreover, the strategy employs high-definition cameras installed at the RHGC. This framework enables the system to monitor objects within the Region of Interest (ROI) at crossings, detect the approach of trains, and clear the crossing area before a train arrives. Regarding accuracy, precision, recall, and Intersection over Union (IoU), the proposed state-of-the-art NMS-based object detection ensemble model achieved 96% precision. In addition, the UNet segmentation model obtained a 98% IoU value. This automated railroad grade crossing system powered by artificial intelligence represents a promising solution for enhancing safety at highway-railroad intersections.
Related papers
- Edge-Assisted ML-Aided Uncertainty-Aware Vehicle Collision Avoidance at Urban Intersections [12.812518632907771]
We present a novel framework that detects preemptively collisions at urban crossroads.
We exploit the Multi-access Edge Computing platform of 5G networks.
arXiv Detail & Related papers (2024-04-22T18:45:40Z) - Train Ego-Path Detection on Railway Tracks Using End-to-End Deep Learning [2.855485723554975]
This paper introduces the task of "train ego-path detection"
It aims to identify the train's immediate path, or "ego-path", within potentially complex and dynamic railway environments.
At the heart of our study lies TEP-Net, an end-to-end deep learning framework tailored for ego-path detection.
arXiv Detail & Related papers (2024-03-19T18:46:32Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures.
The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks.
arXiv Detail & Related papers (2022-11-15T15:04:06Z) - Intelligent Railway Foreign Object Detection: A Semi-supervised
Convolutional Autoencoder Based Method [7.557470133155959]
We develop a semi-supervised convolutional autoencoder based framework that only requires railway track images without prior knowledge on the foreign objects in the training process.
The proposed framework is useful for data analytics via the train Internet-of-Things (IoT) systems.
arXiv Detail & Related papers (2021-08-05T07:32:23Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Model Guided Road Intersection Classification [2.9248680865344348]
This work investigates inter-section classification from RGB images using well-consolidate neural network approaches along with a method to enhance the results based on the teacher/student training paradigm.
An extensive experimental activity aimed at identifying the best input configuration and evaluating different network parameters on both the well-known KITTI dataset and the new KITTI-360 sequences shows that our method outperforms current state-of-the-art approaches on a per-frame basis and prove the effectiveness of the proposed learning scheme.
arXiv Detail & Related papers (2021-04-26T09:15:28Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Deep Learning with Attention Mechanism for Predicting Driver Intention
at Intersection [2.1699196439348265]
The proposed solution is promising to be applied in advanced driver assistance systems (ADAS) and as part of active safety system of autonomous vehicles.
The performance of the proposed approach is evaluated on a naturalistic driving dataset and results show that our method achieves high accuracy as well as outperforms other methods.
arXiv Detail & Related papers (2020-06-10T16:12:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.