Spin dissymmetry in optical cavities
- URL: http://arxiv.org/abs/2403.11358v1
- Date: Sun, 17 Mar 2024 22:26:17 GMT
- Title: Spin dissymmetry in optical cavities
- Authors: Jefferson Dixon, Zachary N. Mauri, Christopher J. Ciccarino, Priyanuj Bordoloi, Feng Pan, Felipe H. da Jornada, Jennifer Dionne,
- Abstract summary: We introduce the spin dissymmetry factor, a measure of the spin-selectivity in the optical transition rate of quantum particles.
This spin dissymmetry factor is valid locally, including at material interfaces and within optical cavities.
- Score: 1.0623601316070508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the spin dissymmetry factor, a measure of the spin-selectivity in the optical transition rate of quantum particles. This spin dissymmetry factor is valid locally, including at material interfaces and within optical cavities. We design and numerically demonstrate an optical cavity with three-fold rotational symmetry that maximizes spin dissymmetry, thereby minimizing the spin dephasing of a cavity-coupled quantum particle. Our approach emphasizes the difference between spin and chirality in the nearfield and reveals a classical parameter for designing more efficient quantum optical devices.
Related papers
- Spin-dependent routing of optical beams in the bulk of twisted anisotropic media [39.58317527488534]
We discuss a new kind of photonic spin-Hall effect (PSHE) for optical beams propagating inside an inhomogeneously twisted anisotropic material.<n>The rotation angle plays the role of an effective gauge field.<n>When the twisting distribution is odd symmetric, the optical beams move along mirror-symmetric trajectories according to their helicity.
arXiv Detail & Related papers (2025-07-07T12:29:08Z) - Spiral dislocation as a tunable geometric parameter for optical responses in quantum rings [0.562479170374811]
We investigate the optical and quantum mechanical properties of a charged spinless particle confined in a two-dimensional quantum ring.<n>The dislocation is modeled by a torsion-induced metric that alters the spatial geometry without introducing curvature.<n>The geometric deformation leads to an energy-dependent effective potential, enabling a tunable control over the bound-state spectrum.
arXiv Detail & Related papers (2025-06-29T15:52:36Z) - Theory of optical spinpolarization of axial divacancy and nitrogen-vacancy defects in 4H-SiC [0.0]
electron-phonon coupling in the spinpolarization loop is still unrevealed.
We demonstrate the electronic level structure, assisted by symmetry analysis.
We analyze the photoluminescence PL lifetime based on the major transition rates in the optical spinpolarization loop.
arXiv Detail & Related papers (2024-09-16T12:31:43Z) - Chirality-induced emergent spin-orbit coupling in topological atomic
lattices [0.0]
We show that photonic excitations in pseudospin-1/2 atomic lattices exhibit an emergent spin-orbit coupling when the geometry is chiral.
Our results demonstrate that chiral atom arrays are a robust platform for realizing spin-orbit coupled topological states of matter.
arXiv Detail & Related papers (2023-11-15T19:00:13Z) - Optical vortex harmonic generation facilitated by photonic spin-orbit
entanglement [0.20999222360659608]
We report the first experimental demonstration of nonlinear optical frequency conversion.
We produce an optical vortex at the third harmonic, which has long been regarded as a forbidden process in isotropic media.
Our work opens up new possibilities of spin-orbit-coupling subwavelength waveguides.
arXiv Detail & Related papers (2023-08-05T16:01:59Z) - Quantum theory of light interaction with a Lorenz-Mie particle: Optical
detection and three-dimensional ground-state cooling [0.0]
Hamiltonian describes fundamental coupling between photons and center-of-mass phonons, including Stokes and anti-Stokes processes.
We show how to evaluate laser recoil rates and the information radiation patterns in the presence of a focused laser beam.
arXiv Detail & Related papers (2022-12-09T13:11:29Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Stationary Gaussian Entanglement between Levitated Nanoparticles [0.0]
Coherent scattering of photons is a novel mechanism of optomechanical coupling for optically levitated nanoparticles.
We show that it allows efficient deterministic generation of Gaussian entanglement between two particles in separate tweezers.
arXiv Detail & Related papers (2020-06-05T09:55:10Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.