Quantum theory of light interaction with a Lorenz-Mie particle: Optical
detection and three-dimensional ground-state cooling
- URL: http://arxiv.org/abs/2212.04838v3
- Date: Fri, 1 Dec 2023 10:56:19 GMT
- Title: Quantum theory of light interaction with a Lorenz-Mie particle: Optical
detection and three-dimensional ground-state cooling
- Authors: Patrick Maurer, Carlos Gonzalez-Ballestero, and Oriol Romero-Isart
- Abstract summary: Hamiltonian describes fundamental coupling between photons and center-of-mass phonons, including Stokes and anti-Stokes processes.
We show how to evaluate laser recoil rates and the information radiation patterns in the presence of a focused laser beam.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze theoretically the motional quantum dynamics of a levitated
dielectric sphere interacting with the quantum electromagnetic field beyond the
point-dipole approximation. To this end, we derive a Hamiltonian describing the
fundamental coupling between photons and center-of-mass phonons, including
Stokes and anti-Stokes processes, and the coupling rates for a dielectric
sphere of arbitrary refractive index and size. We then derive the laser recoil
heating rates and the information radiation patterns (the angular distribution
of the scattered light that carries information about the center-of-mass
motion) and show how to evaluate them efficiently in the presence of a focused
laser beam, in either a running- or a standing-wave configuration. This
information is crucial to implement active feedback cooling of optically
levitated dielectric spheres beyond the point-dipole approximation. Our results
predict several experimentally feasible configurations and parameter regimes
where optical detection and active feedback can simultaneously cool to the
ground state the three-dimensional center-of-mass motion of dielectric spheres
in the micrometer regime. Scaling up the mass of the dielectric particles that
can be cooled to the center-of-mass ground state is relevant not only for
testing quantum mechanics at large scales but also for current experimental
efforts that search for new physics (e.g., dark matter) using optically
levitated sensors.
Related papers
- Probing Electromagnetic Nonreciprocity with Quantum Geometry of Photonic
States [0.0]
We propose a contact-less detection using a cross-cavity device where a material of interest is placed at its centre.
We show that the optical properties of the material, such as Kerr and Faraday rotation, manifest in the coupling between the cavities' electromagnetic modes and in the shift of their resonant frequencies.
Our approach is expected to be applicable across a broad spectrum of experimental platforms including Fock states in optical cavities, or, coherent states in microwave and THz resonators.
arXiv Detail & Related papers (2023-10-24T20:37:09Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Surface-induced decoherence and heating of charged particles [0.0]
We provide a theoretical toolbox for describing how the rotational and translational quantum dynamics of charged nano- to microscale objects is affected by near metallic and dielectric surfaces.
The resulting quantum master equations describe the coherent surface-particle interaction, due to image charges and Casimir-Polder potentials, as well as surface-induced decoherence and heating.
arXiv Detail & Related papers (2022-03-28T20:49:42Z) - Ponderomotive squeezing of light by a levitated nanoparticle in free
space [0.0]
A mechanically compliant element can be set into motion by the interaction with light.
This light-driven motion can give rise to ponderomotive correlations in the electromagnetic field.
cavities are often employed to enhance these correlations up to the point where they generate quantum squeezing of light.
arXiv Detail & Related papers (2022-02-18T07:57:36Z) - Heralded spectroscopy reveals exciton-exciton correlations in single
colloidal quantum dots [0.8911822441893501]
We introduce biexciton heralded spectroscopy, enabled by a single-photon avalanche diode array based spectrometer.
This allows us to directly observe biexciton-exciton emission cascades and measure the biexciton binding energy of single quantum dots at room temperature.
We uncover correlations hitherto masked in ensembles, of the biexciton binding energy with both charge-carrier confinement and fluctuations of the local electrostatic potential.
arXiv Detail & Related papers (2021-08-01T00:41:57Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.