論文の概要: Robust Overfitting Does Matter: Test-Time Adversarial Purification With FGSM
- arxiv url: http://arxiv.org/abs/2403.11448v1
- Date: Mon, 18 Mar 2024 03:54:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:47:44.202441
- Title: Robust Overfitting Does Matter: Test-Time Adversarial Purification With FGSM
- Title(参考訳): ロバストオーバーフィッティングが重要:FGSMによるテストタイムの敵対的浄化
- Authors: Linyu Tang, Lei Zhang,
- Abstract要約: 防衛戦略は通常、特定の敵攻撃法のためにディープニューラルネットワーク(DNN)を訓練し、この種の敵攻撃に対する防御において優れた堅牢性を達成することができる。
しかしながら、不慣れな攻撃モダリティに関する評価を受けると、実証的な証拠はDNNの堅牢性の顕著な劣化を示す。
ほとんどの防衛方法は、DNNの敵の堅牢性を改善するために、クリーンな例の精度を犠牲にすることが多い。
- 参考スコア(独自算出の注目度): 5.592360872268223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous studies have demonstrated the susceptibility of deep neural networks (DNNs) to subtle adversarial perturbations, prompting the development of many advanced adversarial defense methods aimed at mitigating adversarial attacks. Current defense strategies usually train DNNs for a specific adversarial attack method and can achieve good robustness in defense against this type of adversarial attack. Nevertheless, when subjected to evaluations involving unfamiliar attack modalities, empirical evidence reveals a pronounced deterioration in the robustness of DNNs. Meanwhile, there is a trade-off between the classification accuracy of clean examples and adversarial examples. Most defense methods often sacrifice the accuracy of clean examples in order to improve the adversarial robustness of DNNs. To alleviate these problems and enhance the overall robust generalization of DNNs, we propose the Test-Time Pixel-Level Adversarial Purification (TPAP) method. This approach is based on the robust overfitting characteristic of DNNs to the fast gradient sign method (FGSM) on training and test datasets. It utilizes FGSM for adversarial purification, to process images for purifying unknown adversarial perturbations from pixels at testing time in a "counter changes with changelessness" manner, thereby enhancing the defense capability of DNNs against various unknown adversarial attacks. Extensive experimental results show that our method can effectively improve both overall robust generalization of DNNs, notably over previous methods.
- Abstract(参考訳): 多くの研究が、深いニューラルネットワーク(DNN)の微妙な敵の摂動に対する感受性を示しており、敵の攻撃を緩和することを目的とした多くの先進的な敵の防御方法の開発を促している。
現在の防衛戦略は、通常、特定の敵攻撃法のためにDNNを訓練し、この種の敵攻撃に対する防御において良好な堅牢性を達成することができる。
それにもかかわらず、不慣れな攻撃モダリティに関する評価を受けると、実証的な証拠はDNNの堅牢性の顕著な劣化を示す。
一方、クリーンな例の分類精度と敵対的な例との間にはトレードオフがある。
ほとんどの防衛方法は、DNNの敵の堅牢性を改善するために、クリーンな例の精度を犠牲にすることが多い。
これらの問題を緩和し、DNNの全体的ロバストな一般化を促進するために、テスト時間画素レベル補償法(TPAP)を提案する。
このアプローチは、トレーニングとテストデータセットにおける高速勾配符号法(FGSM)に対するDNNの頑健なオーバーフィッティング特性に基づいている。
FGSMを逆境浄化に利用し、テスト時に画素から未知の逆境の摂動を「変化のない変化」で浄化する画像を処理し、様々な未知の逆境攻撃に対するDNNの防御能力を向上する。
大規模な実験結果から,本手法はDNNの全体的ロバストな一般化,特に従来手法よりも効果的に改善可能であることが示唆された。
関連論文リスト
- Detecting Adversarial Examples [24.585379549997743]
本稿では,Deep Neural Networks の層出力を解析して,敵のサンプルを検出する手法を提案する。
提案手法はDNNアーキテクチャと互換性が高く,画像,ビデオ,オーディオなど,さまざまな領域にまたがって適用可能である。
論文 参考訳(メタデータ) (2024-10-22T21:42:59Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
バックドア攻撃は、悪質なトリガをDNNモデルに過剰に挿入することを目的としており、テストシナリオ中に不正な制御を許可している。
既存の方法では防衛戦略に対する堅牢性が欠如しており、主に無作為な試薬を無作為に選別しながら、引き金の盗難を強化することに重点を置いている。
信頼性スコアの低いサンプルを選別し、これらの攻撃を識別・対処する上で、守備側の課題を著しく増大させる。
論文 参考訳(メタデータ) (2023-10-08T18:57:36Z) - Not So Robust After All: Evaluating the Robustness of Deep Neural
Networks to Unseen Adversarial Attacks [5.024667090792856]
ディープニューラルネットワーク(DNN)は、分類、認識、予測など、さまざまなアプリケーションで注目を集めている。
従来のDNNの基本的属性は、入力データの修正に対する脆弱性である。
本研究の目的は、敵攻撃に対する現代の防御機構の有効性と一般化に挑戦することである。
論文 参考訳(メタデータ) (2023-08-12T05:21:34Z) - Denoising Autoencoder-based Defensive Distillation as an Adversarial
Robustness Algorithm [0.0]
敵対的攻撃はディープニューラルネットワーク(DNN)の堅牢性を著しく脅かす
本研究は, 防衛蒸留機構をデノナイジングオートエンコーダ(DAE)と組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-28T11:34:54Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - A Mask-Based Adversarial Defense Scheme [3.759725391906588]
敵対的攻撃はディープニューラルネットワーク(DNN)の機能と精度を妨げる
敵攻撃による負の効果を軽減するため,DNNのためのMask-based Adversarial Defense scheme (MAD)を提案する。
論文 参考訳(メタデータ) (2022-04-21T12:55:27Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
安全クリティカルな監視システムの重要性から、群衆のカウントは多くの注目を集めています。
近年の研究では、ディープニューラルネットワーク(DNN)の手法が敵の攻撃に弱いことが示されている。
群衆カウントモデルのロバスト性を評価するために,Momentumを用いた攻撃戦略としてAdversarial Patch Attackを提案する。
論文 参考訳(メタデータ) (2021-04-22T05:10:55Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。