論文の概要: Implicit Discriminative Knowledge Learning for Visible-Infrared Person Re-Identification
- arxiv url: http://arxiv.org/abs/2403.11708v2
- Date: Thu, 21 Mar 2024 02:48:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 12:50:46.122375
- Title: Implicit Discriminative Knowledge Learning for Visible-Infrared Person Re-Identification
- Title(参考訳): 可視赤外人物再同定のための暗黙的識別的知識学習
- Authors: Kaijie Ren, Lei Zhang,
- Abstract要約: Visible-Infrared Person Re-identification (VI-ReID) は、横断歩行者検索の課題である。
既存の研究は主に、異なるモダリティのイメージを統一された空間に埋め込み、モダリティの共有された特徴をマイニングすることに焦点を当てている。
本稿では,モダリティ特定に含まれる暗黙的識別情報を発見・活用するために,新たなIDKLネットワークを提案する。
- 参考スコア(独自算出の注目度): 5.592360872268223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visible-Infrared Person Re-identification (VI-ReID) is a challenging cross-modal pedestrian retrieval task, due to significant intra-class variations and cross-modal discrepancies among different cameras. Existing works mainly focus on embedding images of different modalities into a unified space to mine modality-shared features. They only seek distinctive information within these shared features, while ignoring the identity-aware useful information that is implicit in the modality-specific features. To address this issue, we propose a novel Implicit Discriminative Knowledge Learning (IDKL) network to uncover and leverage the implicit discriminative information contained within the modality-specific. First, we extract modality-specific and modality-shared features using a novel dual-stream network. Then, the modality-specific features undergo purification to reduce their modality style discrepancies while preserving identity-aware discriminative knowledge. Subsequently, this kind of implicit knowledge is distilled into the modality-shared feature to enhance its distinctiveness. Finally, an alignment loss is proposed to minimize modality discrepancy on enhanced modality-shared features. Extensive experiments on multiple public datasets demonstrate the superiority of IDKL network over the state-of-the-art methods. Code is available at https://github.com/1KK077/IDKL.
- Abstract(参考訳): Visible-Infrared Person Re-identification (VI-ReID) は、クラス内における大きな変化と、異なるカメラ間での横断的不一致のため、横断的歩行者検索の課題である。
既存の研究は主に、異なるモダリティのイメージを統一された空間に埋め込み、モダリティの共有された特徴をマイニングすることに焦点を当てている。
それらは共有された特徴の中でのみ独特な情報を求める一方で、モダリティ固有の特徴に暗黙的なアイデンティティに気付く有用な情報を無視する。
この問題に対処するために,モダリティ特定に含まれる暗黙的な識別情報を発見・活用するために,新しいIDKL(Implicit Discriminative Knowledge Learning)ネットワークを提案する。
まず、新しいデュアルストリームネットワークを用いて、モダリティ固有およびモダリティ共有の特徴を抽出する。
そして, モダリティ特有の特徴は, 同一性を考慮した識別的知識を維持しながら, モダリティスタイルの相違を低減するために浄化される。
その後、この種の暗黙の知識は、その特異性を高めるために、モダリティ共有の特徴に蒸留される。
最後に、改良されたモダリティ共有特徴に対するモダリティの差を最小限に抑えるためにアライメント損失を提案する。
複数の公開データセットに対する大規模な実験は、最先端の手法よりもIDKLネットワークの方が優れていることを示す。
コードはhttps://github.com/1KK077/IDKLで入手できる。
関連論文リスト
- Dynamic Identity-Guided Attention Network for Visible-Infrared Person Re-identification [17.285526655788274]
Visible-infrared person re-identification (VI-ReID) は、可視光と赤外線の同一性を持つ人物をマッチングすることを目的としている。
既存の方法は一般的に、画像や特徴レベルでのクロスモーダルな違いを橋渡ししようとする。
我々は、動的ID誘導型注意ネットワーク(DIAN)を導入し、アイデンティティ誘導型およびモダリティ一貫性のある埋め込みをマイニングする。
論文 参考訳(メタデータ) (2024-05-21T12:04:56Z) - High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning [54.86882315023791]
一般化ゼロショット学習(HDAFL)のための高識別属性特徴学習(High-Discriminative Attribute Feature Learning)という革新的な手法を提案する。
HDAFLは複数の畳み込みカーネルを使用して、画像の属性と高い相関性を持つ識別領域を自動的に学習する。
また、属性間の識別能力を高めるために、Transformerベースの属性識別エンコーダを導入する。
論文 参考訳(メタデータ) (2024-04-07T13:17:47Z) - Cross-Modality Perturbation Synergy Attack for Person Re-identification [66.48494594909123]
相互モダリティReIDの主な課題は、異なるモダリティ間の視覚的差異を効果的に扱うことである。
既存の攻撃方法は、目に見える画像のモダリティの特徴に主に焦点を当てている。
本研究では,クロスモーダルReIDに特化して設計されたユニバーサル摂動攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-18T15:56:23Z) - Modality Unifying Network for Visible-Infrared Person Re-Identification [24.186989535051623]
Visible-infrared person re-identification (VI-ReID) は、異種間の大きな相違とクラス内変異のために難しい課題である。
既存の手法は主に、異なるモダリティを同じ特徴空間に埋め込むことで、モダリティ共有表現を学習することに焦点を当てている。
そこで我々は,VI-ReID の頑健な補助モダリティを探索するために,新しいモダリティ統一ネットワーク (MUN) を提案する。
論文 参考訳(メタデータ) (2023-09-12T14:22:22Z) - Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification [61.49219876388174]
Visible-Infrared person re-identification (VI-ReID)は、インテリジェントビデオ監視において重要かつ困難な課題である。
既存の手法は主に共有特徴空間の学習に重点を置いており、可視光と赤外光の相違を減らす。
本稿では,新しい相互情報・モダリティコンセンサスネットワーク,すなわちCMInfoNetを提案し,モダリティ不変な同一性の特徴を抽出する。
論文 参考訳(メタデータ) (2023-08-29T06:55:42Z) - Shape-Erased Feature Learning for Visible-Infrared Person
Re-Identification [90.39454748065558]
体型は、VI-ReIDにとって重要なモダリティシェードの1つである。
本稿では,2つの部分空間におけるモダリティ共有特徴を関連づける形状学習パラダイムを提案する。
SYSU-MM01, RegDB, HITSZ-VCMデータセットを用いた実験により, 本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-04-09T10:22:10Z) - Learning Progressive Modality-shared Transformers for Effective
Visible-Infrared Person Re-identification [27.75907274034702]
我々は,能率VI-ReIDのためのPMT(Progressive Modality-Shared Transformer)という新しいディープラーニングフレームワークを提案する。
モダリティギャップの負の効果を低減するために、まず、グレースケールの画像を補助的なモダリティとして捉え、進歩的な学習戦略を提案する。
クラス内差が大きく,クラス間差が少ない問題に対処するために,識別中心損失を提案する。
論文 参考訳(メタデータ) (2022-12-01T02:20:16Z) - Towards Intrinsic Common Discriminative Features Learning for Face
Forgery Detection using Adversarial Learning [59.548960057358435]
本稿では, 対人学習を利用して, 異なる偽造法と顔の同一性による負の効果を除去する手法を提案する。
我々の顔偽造検出モデルは、偽造法や顔の同一性の影響を排除し、共通の識別的特徴を抽出することを学ぶ。
論文 参考訳(メタデータ) (2022-07-08T09:23:59Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - Hybrid-Attention Guided Network with Multiple Resolution Features for
Person Re-Identification [30.285126447140254]
本稿では,ハイレベルな特徴を学習する際の情報損失を低減するために,ハイレベルな埋め込みと低レベルな埋め込みを融合した新しい人物再IDモデルを提案する。
また,対象物に関するより識別的な特徴を抽出することを目的とした,空間的およびチャネル的注意機構をモデルに導入する。
論文 参考訳(メタデータ) (2020-09-16T08:12:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。