論文の概要: Fairness Evaluation for Uplift Modeling in the Absence of Ground Truth
- arxiv url: http://arxiv.org/abs/2403.12069v1
- Date: Mon, 12 Feb 2024 06:13:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:46:43.488220
- Title: Fairness Evaluation for Uplift Modeling in the Absence of Ground Truth
- Title(参考訳): 地中真実の存在下での揚力モデリングの公平性評価
- Authors: Serdar Kadioglu, Filip Michalsky,
- Abstract要約: 本稿では,サロゲートを発生させることにより,真理の欠如を克服する枠組みを提案する。
実際のマーケティングキャンペーンの総合的な研究にどのようにアプローチを適用するかを示す。
- 参考スコア(独自算出の注目度): 2.946562343070891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The acceleration in the adoption of AI-based automated decision-making systems poses a challenge for evaluating the fairness of algorithmic decisions, especially in the absence of ground truth. When designing interventions, uplift modeling is used extensively to identify candidates that are likely to benefit from treatment. However, these models remain particularly susceptible to fairness evaluation due to the lack of ground truth on the outcome measure since a candidate cannot be in both treatment and control simultaneously. In this article, we propose a framework that overcomes the missing ground truth problem by generating surrogates to serve as a proxy for counterfactual labels of uplift modeling campaigns. We then leverage the surrogate ground truth to conduct a more comprehensive binary fairness evaluation. We show how to apply the approach in a comprehensive study from a real-world marketing campaign for promotional offers and demonstrate its enhancement for fairness evaluation.
- Abstract(参考訳): AIベースの自動意思決定システムの採用の加速は、アルゴリズムによる決定の公平性を評価する上で、特に基礎的真理が欠如している場合において、課題となる。
介入を設計する際には、治療の恩恵を受ける可能性のある候補を特定するために、アップリフトモデリングが広く使用される。
しかし、これらのモデルは、候補が同時に治療と制御の両面では不可能であるため、結果測定に基礎的真理が欠如していることから、公平性評価に特に影響しうる。
本稿では,高揚度モデリングキャンペーンの反実的ラベルの代用としてサロゲートを生成することによって,不足する真実を克服する枠組みを提案する。
次に、補助的基底真理を利用して、より包括的な二項公正性評価を行う。
本稿では,このアプローチを,プロモーションオファリングのための現実のマーケティングキャンペーンから総合的な研究に応用する方法を示し,公正性評価の強化を実証する。
関連論文リスト
- FairLENS: Assessing Fairness in Law Enforcement Speech Recognition [37.75768315119143]
本研究では,異なるモデル間の公平さの相違を検証するための,新しい適応性評価手法を提案する。
我々は1つのオープンソースと11の商用 ASR モデルに対してフェアネスアセスメントを行った。
論文 参考訳(メタデータ) (2024-05-21T19:23:40Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
バッチ正規化をセンシティブ属性に適応させるFairAdaBNを提案する。
本研究では,FATE(Fairness-Accuracy Trade-off efficiency)と呼ばれる新しい指標を提案する。
2つの皮膚科学データセットを用いた実験により,提案手法はフェアネス基準とFATEの他の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T02:22:07Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
モデルベース最適化(MBO)では、マシンラーニングを使用して、(基底真理)オラクルと呼ばれるブラックボックス関数に対する報酬の尺度を最大化する候補を設計することに興味があります。
モデル検証中に基底オラクルに対する近似をトレーニングし、その代わりに使用することができるが、その評価は近似的であり、敵の例に対して脆弱である。
本手法は,外挿量を測定するために提案した評価フレームワークにカプセル化されている。
論文 参考訳(メタデータ) (2022-11-19T16:57:37Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
既存のデバイアス法、例えば、敵の訓練や、表現から保護された情報を取り除くことは、バイアスを減らすことが示されている。
2つの新たな学習目標を提案し,2つの分類課題における高い性能を維持しつつ,バイアスの低減に有効であることを示す。
論文 参考訳(メタデータ) (2022-05-05T01:57:58Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Beyond traditional assumptions in fair machine learning [5.029280887073969]
この論文は、連続的な意思決定における公正性に対する従来の機械学習アプローチの基礎となる一般的な仮定を精査する。
観測データの統計的特性に基づいたグループフェアネス基準は, 基本的に限定的であることを示す。
我々は、機密データが実際に容易に利用できるという仮定を克服する。
論文 参考訳(メタデータ) (2021-01-29T09:02:15Z) - Prune Responsibly [0.913755431537592]
機械学習アプリケーションにおける特定の公正性の定義を無視すると、基礎となるモデルを刈り取ることがそれに影響を及ぼす。
本研究では,100万以上の画像分類モデルを対象としたタスクやアーキテクチャにおいて,望ましくない性能不均衡の出現と悪化を調査・記録する。
ニューラルネットワークプルーニングに関する実際のエンジニアリング意思決定において、バイアス、公平性、包括的メトリクスを含む透過的なレポートの必要性を実証する。
論文 参考訳(メタデータ) (2020-09-10T04:43:11Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Ethical Adversaries: Towards Mitigating Unfairness with Adversarial
Machine Learning [8.436127109155008]
個人や組織は、モデルデザイナやデプロイ担当者が責任を持つように、不公平な結果に気付き、テストし、批判します。
トレーニングデータセットから生じる不公平な表現を緩和する上で,これらのグループを支援するフレームワークを提供する。
我々のフレームワークは公平性を改善するために2つの相互運用敵に依存している。
論文 参考訳(メタデータ) (2020-05-14T10:10:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。