Leveraging Large Language Models to Extract Information on Substance Use Disorder Severity from Clinical Notes: A Zero-shot Learning Approach
- URL: http://arxiv.org/abs/2403.12297v1
- Date: Mon, 18 Mar 2024 22:39:03 GMT
- Title: Leveraging Large Language Models to Extract Information on Substance Use Disorder Severity from Clinical Notes: A Zero-shot Learning Approach
- Authors: Maria Mahbub, Gregory M. Dams, Sudarshan Srinivasan, Caitlin Rizy, Ioana Danciu, Jodie Trafton, Kathryn Knight,
- Abstract summary: Substance use disorder (SUD) poses a major concern due to its detrimental effects on health and society.
Existing diagnostic coding systems like the International Classification of Diseases (ICD-10) lack granularity for certain diagnoses.
Traditional natural language processing (NLP) methods face limitations in accurately parsing such diverse clinical language.
This study investigates the application of Large Language Models (LLMs) for extracting severity-related information for various SUD diagnoses from clinical notes.
- Score: 3.0962132663521227
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Substance use disorder (SUD) poses a major concern due to its detrimental effects on health and society. SUD identification and treatment depend on a variety of factors such as severity, co-determinants (e.g., withdrawal symptoms), and social determinants of health. Existing diagnostic coding systems used by American insurance providers, like the International Classification of Diseases (ICD-10), lack granularity for certain diagnoses, but clinicians will add this granularity (as that found within the Diagnostic and Statistical Manual of Mental Disorders classification or DSM-5) as supplemental unstructured text in clinical notes. Traditional natural language processing (NLP) methods face limitations in accurately parsing such diverse clinical language. Large Language Models (LLMs) offer promise in overcoming these challenges by adapting to diverse language patterns. This study investigates the application of LLMs for extracting severity-related information for various SUD diagnoses from clinical notes. We propose a workflow employing zero-shot learning of LLMs with carefully crafted prompts and post-processing techniques. Through experimentation with Flan-T5, an open-source LLM, we demonstrate its superior recall compared to the rule-based approach. Focusing on 11 categories of SUD diagnoses, we show the effectiveness of LLMs in extracting severity information, contributing to improved risk assessment and treatment planning for SUD patients.
Related papers
- Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - Fine-Tuning In-House Large Language Models to Infer Differential Diagnosis from Radiology Reports [1.5972172622800358]
This study introduces a pipeline for developing in-house LLMs tailored to identify differential diagnoses from radiology reports.
evaluated on a set of 1,067 reports annotated by clinicians, the proposed model achieves an average F1 score of 92.1%, which is on par with GPT-4.
arXiv Detail & Related papers (2024-10-11T20:16:25Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Deciphering Diagnoses: How Large Language Models Explanations Influence
Clinical Decision Making [0.0]
Large Language Models (LLMs) are emerging as a promising tool to generate plain-text explanations for medical decisions.
This study explores the effectiveness and reliability of LLMs in generating explanations for diagnoses based on patient complaints.
arXiv Detail & Related papers (2023-10-03T00:08:23Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
Large language models (LLMs) have shown promise in natural language processing (NLP), but their effectiveness on a diverse range of clinical summarization tasks remains unproven.
In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks.
A clinical reader study with ten physicians evaluates summary, completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts.
arXiv Detail & Related papers (2023-09-14T05:15:01Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - CohortGPT: An Enhanced GPT for Participant Recruitment in Clinical Study [17.96401880059829]
Large Language Models (LLMs) such as ChatGPT have achieved tremendous success in various downstream tasks.
We propose to use a knowledge graph as auxiliary information to guide the LLMs in making predictions.
Our few-shot learning method achieves satisfactory performance compared with fine-tuning strategies.
arXiv Detail & Related papers (2023-07-21T04:43:00Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
Large language models (LLMs) have made significant progress in various domains, including healthcare.
In this study, we evaluate state-of-the-art LLMs within the realm of clinical language understanding tasks.
arXiv Detail & Related papers (2023-04-09T16:31:47Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.