論文の概要: Offline Imitation of Badminton Player Behavior via Experiential Contexts and Brownian Motion
- arxiv url: http://arxiv.org/abs/2403.12406v1
- Date: Tue, 19 Mar 2024 03:34:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 15:31:57.830532
- Title: Offline Imitation of Badminton Player Behavior via Experiential Contexts and Brownian Motion
- Title(参考訳): 経験的文脈とブラウン運動によるバドミントン選手の行動のオフライン模倣
- Authors: Kuang-Da Wang, Wei-Yao Wang, Ping-Chun Hsieh, Wen-Chih Peng,
- Abstract要約: RallyNetは、バドミントンプレーヤーの振る舞いに対する階層的なオフライン模倣学習モデルである。
我々はRallyNetを世界最大規模のバドミントンデータセットで広く検証する。
その結果、オフラインの模倣学習法や最先端のターンベースアプローチよりもRallyNetの方が優れていることが明らかになった。
- 参考スコア(独自算出の注目度): 19.215240805688836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the dynamic and rapid tactic involvements of turn-based sports, badminton stands out as an intrinsic paradigm that requires alter-dependent decision-making of players. While the advancement of learning from offline expert data in sequential decision-making has been witnessed in various domains, how to rally-wise imitate the behaviors of human players from offline badminton matches has remained underexplored. Replicating opponents' behavior benefits players by allowing them to undergo strategic development with direction before matches. However, directly applying existing methods suffers from the inherent hierarchy of the match and the compounding effect due to the turn-based nature of players alternatively taking actions. In this paper, we propose RallyNet, a novel hierarchical offline imitation learning model for badminton player behaviors: (i) RallyNet captures players' decision dependencies by modeling decision-making processes as a contextual Markov decision process. (ii) RallyNet leverages the experience to generate context as the agent's intent in the rally. (iii) To generate more realistic behavior, RallyNet leverages Geometric Brownian Motion (GBM) to model the interactions between players by introducing a valuable inductive bias for learning player behaviors. In this manner, RallyNet links player intents with interaction models with GBM, providing an understanding of interactions for sports analytics. We extensively validate RallyNet with the largest available real-world badminton dataset consisting of men's and women's singles, demonstrating its ability to imitate player behaviors. Results reveal RallyNet's superiority over offline imitation learning methods and state-of-the-art turn-based approaches, outperforming them by at least 16% in mean rule-based agent normalization score. Furthermore, we discuss various practical use cases to highlight RallyNet's applicability.
- Abstract(参考訳): ターンベーススポーツの動的かつ迅速な戦術的関与において、バドミントンはプレイヤーの交代依存的な意思決定を必要とする本質的なパラダイムとして際立っている。
連続的な意思決定におけるオフラインの専門家データからの学習の進歩は、様々な領域で見られてきたが、オフラインバドミントンの試合から人間のプレイヤーの行動を適切に模倣する方法は、まだ探索されていない。
相手の行動の再現は、試合前に戦略的な開発を行うことでプレイヤーに利益をもたらす。
しかし、既存の手法を直接適用することは、代わりにアクションを取るプレイヤーのターンベースの性質によって、マッチの固有の階層と複合効果に悩まされる。
本稿では,バドミントン奏者行動のための新しい階層型オフライン模倣学習モデルであるRallyNetを提案する。
(i)RallyNetは、意思決定プロセスを文脈的マルコフ決定プロセスとしてモデル化することにより、プレイヤーの意思決定依存性をキャプチャする。
(ii) RallyNetは、エージェントのアライメントにおける意図としてコンテキストを生成するために、経験を活用します。
3)より現実的な行動を生成するため,RallyNetは幾何学的ブラウン運動(GBM)を活用してプレイヤー間の相互作用をモデル化する。
このように、RallyNetはプレイヤーの意図をGBMとのインタラクションモデルと結びつけ、スポーツ分析のためのインタラクションの理解を提供する。
我々はRallyNetを、男性と女性のシングルで構成された世界最大規模のバドミントンデータセットで広く検証し、プレイヤーの振る舞いを模倣する能力を実証した。
その結果、RallyNetはオフラインの模倣学習法や最先端のターンベースアプローチよりも優れており、ルールベースのエージェント正規化スコアの平均で少なくとも16%上回っていることが明らかとなった。
さらに、RallyNetの適用性を強調するために、さまざまなユースケースについて論じる。
関連論文リスト
- player2vec: A Language Modeling Approach to Understand Player Behavior in Games [2.2216044069240657]
過去の行動ログから潜在ユーザ表現を学習する手法は、eコマース、コンテンツストリーミング、その他の設定におけるレコメンデーションタスクの注目を集めている。
本稿では,長距離トランスフォーマーモデルをプレイヤーの行動データに拡張することで,この制限を克服する新しい手法を提案する。
ゲームにおける行動追跡の具体性について議論し,文中の単語に類似した方法でゲーム内イベントを視聴することで,前処理とトークン化のアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-05T17:29:47Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
バドミントンにおけるプレイヤー戦術予測のための深層学習アプローチは、部分的にはラリープレイヤの相互作用に関する効果的な推論に起因する有望なパフォーマンスを示している。
本稿では,Shapley値の変量に基づいてバドミントンにおける予測モデルを解析するためのターンベース特徴属性手法であるShuttleSHAPを提案する。
論文 参考訳(メタデータ) (2023-12-18T05:37:51Z) - All by Myself: Learning Individualized Competitive Behaviour with a
Contrastive Reinforcement Learning optimization [57.615269148301515]
競争ゲームのシナリオでは、エージェントのセットは、彼らの目標を最大化し、敵の目標を同時に最小化する決定を学習する必要があります。
本稿では,競争ゲームの表現を学習し,特定の相手の戦略をどうマップするか,それらを破壊するかを学習する3つのニューラルネットワーク層からなる新しいモデルを提案する。
我々の実験は、オフライン、オンライン、競争特化モデル、特に同じ対戦相手と複数回対戦した場合に、我々のモデルがより良いパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2023-10-02T08:11:07Z) - Who You Play Affects How You Play: Predicting Sports Performance Using
Graph Attention Networks With Temporal Convolution [29.478765505215538]
本研究では,スポーツにおける選手のパフォーマンスを予測するための新しい深層学習手法であるGATv2-GCNを提案する。
グラフアテンションネットワークを使用して、各プレイヤーが互いに支払うアテンションをキャプチャし、より正確なモデリングを可能にします。
実世界スポーツデータを用いたモデルの性能評価を行い,選手のパフォーマンス予測の有効性を実証した。
論文 参考訳(メタデータ) (2023-03-29T14:48:51Z) - Where Will Players Move Next? Dynamic Graphs and Hierarchical Fusion for
Movement Forecasting in Badminton [6.2405734957622245]
我々は、どのタイプのリターンストロークが作られるか、またプレイヤーが以前のストロークに基づいてどこに移動するかを予測することに重点を置いている。
既存のシーケンスベースのモデルはプレイヤー間の相互作用の影響を無視し、グラフベースのモデルは依然として多面的視点に悩まされている。
本稿では,対話型抽出器を用いた動的グラフと階層型移動予測モデル(DyMF)を提案する。
論文 参考訳(メタデータ) (2022-11-22T12:21:24Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
本研究は,競争行動の社会的影響に基づく新しい強化学習機構を提案する。
提案モデルでは, 人工エージェントの学習を調節するための競合スコアを導出するために, 客観的, 社会的認知的メカニズムを集約する。
論文 参考訳(メタデータ) (2022-08-22T14:06:06Z) - ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles
for Stroke Forecasting in Badminton [18.524164548051417]
本稿では,ターンベースのスポーツにおいて,どのストロークをどこで返すべきかを客観的に判断することに焦点を当てる。
本稿では,ラリープログレスとプレーヤスタイルの融合フレームワーク(ShuttleNet)を提案する。
論文 参考訳(メタデータ) (2021-12-02T08:14:23Z) - Exploring the Long Short-Term Dependencies to Infer Shot Influence in
Badminton Matches [9.553207911311926]
ショットのプロセスを完全に記述するためのバドミントン言語を導入します。
本稿では,新しい短期抽出器と長期符号化器からなるディープラーニングモデルを提案する。
本モデルでは,収集結果に対するアクションシーケンスの透明性を実現するためのアテンション機構を組み込んだ。
論文 参考訳(メタデータ) (2021-09-14T04:44:40Z) - Temporally-Aware Feature Pooling for Action Spotting in Soccer
Broadcasts [86.56462654572813]
私たちは、サッカーの試合の主なアクションを一時的にローカライズするサッカー放送におけるアクションスポッティングの分析に焦点を当てています。
時間的知識を組み込んだNetVLAD++という,NetVLADに基づく新たな機能プーリング手法を提案する。
我々は最近の大規模データセット SoccerNet-v2 の方法論をトレーニングし、評価し、アクションスポッティングのための平均平均mAP 53.4% に達した。
論文 参考訳(メタデータ) (2021-04-14T11:09:03Z) - Moody Learners -- Explaining Competitive Behaviour of Reinforcement
Learning Agents [65.2200847818153]
競合シナリオでは、エージェントは動的環境を持つだけでなく、相手の行動に直接影響される。
エージェントのQ値の観察は通常、その振る舞いを説明する方法であるが、選択されたアクション間の時間的関係は示さない。
論文 参考訳(メタデータ) (2020-07-30T11:30:42Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。