論文の概要: A Trainable Feature Extractor Module for Deep Neural Networks and Scanpath Classification
- arxiv url: http://arxiv.org/abs/2403.12493v1
- Date: Tue, 19 Mar 2024 07:02:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 15:02:36.267373
- Title: A Trainable Feature Extractor Module for Deep Neural Networks and Scanpath Classification
- Title(参考訳): ディープニューラルネットワークとスキャンパス分類のための訓練可能な機能外命令モジュール
- Authors: Wolfgang Fuhl,
- Abstract要約: このモジュールの目的は、ディープニューラルネットワークアーキテクチャに直接使用可能な機能ベクトルにスキャンパスを変換することである。
我々の特徴抽出モジュールはディープニューラルネットワークと共同で訓練可能である。
- 参考スコア(独自算出の注目度): 0.9155684383461983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scanpath classification is an area in eye tracking research with possible applications in medicine, manufacturing as well as training systems for students in various domains. In this paper we propose a trainable feature extraction module for deep neural networks. The purpose of this module is to transform a scanpath into a feature vector which is directly useable for the deep neural network architecture. Based on the backpropagated error of the deep neural network, the feature extraction module adapts its parameters to improve the classification performance. Therefore, our feature extraction module is jointly trainable with the deep neural network. The motivation to this feature extraction module is based on classical histogram-based approaches which usually compute distributions over a scanpath. We evaluated our module on three public datasets and compared it to the state of the art approaches.
- Abstract(参考訳): スキャンパス分類(Scanpath classification)は、医学、製造、および様々な領域の学生のための訓練システムに応用できる眼球追跡研究の分野である。
本稿では,ディープニューラルネットワークのためのトレーニング可能な特徴抽出モジュールを提案する。
このモジュールの目的は、ディープニューラルネットワークアーキテクチャに直接使用可能な機能ベクトルにスキャンパスを変換することである。
ディープニューラルネットワークのバックプロパゲートエラーに基づいて、特徴抽出モジュールはそのパラメータを適応させ、分類性能を向上させる。
したがって,我々の特徴抽出モジュールはディープニューラルネットワークと共同で訓練可能である。
この特徴抽出モジュールの動機は、古典的なヒストグラムに基づくアプローチに基づいており、通常はスキャンパス上の分布を計算する。
モジュールを3つの公開データセットで評価し,最先端のアプローチと比較した。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks [0.716879432974126]
コミュニティ検出は、教師なしのデータ探索と、ネットワーク化されたシステムの組織構造を明らかにするために不可欠なツールである。
本研究では,非教師付きコミュニティ検出のための一般的な情報理論的目的関数であるマップ方程式を考察し,下降による勾配の微分可能なテンソル形式で表現する。
我々の定式化は、任意のニューラルネットワークアーキテクチャと互換性のあるマップ方程式を変換し、エンドツーエンドの学習を可能にし、ノード機能を導入し、クラスタの最適な数を自動的に選択します。
論文 参考訳(メタデータ) (2023-10-02T12:32:18Z) - Supervised Feature Selection with Neuron Evolution in Sparse Neural
Networks [17.12834153477201]
スパースニューラルネットワークを用いた資源効率の高い新しい特徴選択法を提案する。
スクラッチからトレーニングされたスパースニューラルネットワークの入力層から、不定形的特徴を徐々に抜き取ることにより、NeuroFSは、機能の情報的サブセットを効率的に導き出す。
NeuroFSは、最先端の教師付き特徴選択モデルの中で最上位のスコアを達成している。
論文 参考訳(メタデータ) (2023-03-10T17:09:55Z) - MDM:Visual Explanations for Neural Networks via Multiple Dynamic Mask [5.333582981327497]
本稿では,推論プロセスの解釈可能性を備えた汎用のサリエンシグラフクエリ手法であるMultiple Dynamic Mask(MDM)を提案する。
MDMサリエンシマップ探索アルゴリズムでは、様々なサリエンシマップ探索法の性能指標と、トレーニングされたニューラルネットワークとしてResNetとDenseNetを用いてMDMの性能指標を実験的に比較した。
論文 参考訳(メタデータ) (2022-07-17T00:25:16Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - HistoTransfer: Understanding Transfer Learning for Histopathology [9.231495418218813]
我々は、ImageNetと病理組織データに基づいてトレーニングされたネットワークから抽出された特徴の性能を比較した。
より複雑なネットワークを用いて学習した機能が性能向上につながるかどうかを検討する。
論文 参考訳(メタデータ) (2021-06-13T18:55:23Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - RE-MIMO: Recurrent and Permutation Equivariant Neural MIMO Detection [85.44877328116881]
無線通信システムにおけるシンボル検出のための新しいニューラルネットワークを提案する。
無線通信システムにおけるいくつかの重要な考察に動機付けられている。
その性能を既存手法と比較し,ネットワークが可変数の送信機を効率的に処理できることを示す。
論文 参考訳(メタデータ) (2020-06-30T22:43:01Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z) - A Deep Conditioning Treatment of Neural Networks [37.192369308257504]
本研究では,入力データの特定のカーネル行列の条件付けを改善することにより,ニューラルネットワークのトレーニング性を向上させることを示す。
ニューラルネットワークの上位層のみのトレーニングと、ニューラルネットワークのタンジェントカーネルを通じてすべてのレイヤをトレーニングするための学習を行うためのバージョンを提供しています。
論文 参考訳(メタデータ) (2020-02-04T20:21:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。