論文の概要: Multilevel CNNs for Parametric PDEs based on Adaptive Finite Elements
- arxiv url: http://arxiv.org/abs/2408.10838v1
- Date: Tue, 20 Aug 2024 13:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 13:35:12.710097
- Title: Multilevel CNNs for Parametric PDEs based on Adaptive Finite Elements
- Title(参考訳): 適応有限要素に基づくパラメトリックPDEのためのマルチレベルCNN
- Authors: Janina Enrica Schütte, Martin Eigel,
- Abstract要約: 高次元パラメータ依存偏微分方程式の多値性を利用するニューラルネットワークアーキテクチャが提案されている。
ネットワークは適応的に洗練された有限要素メッシュのデータで訓練される。
適応型マルチレベルスキームに対して完全収束と複雑性解析を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A neural network architecture is presented that exploits the multilevel properties of high-dimensional parameter-dependent partial differential equations, enabling an efficient approximation of parameter-to-solution maps, rivaling best-in-class methods such as low-rank tensor regression in terms of accuracy and complexity. The neural network is trained with data on adaptively refined finite element meshes, thus reducing data complexity significantly. Error control is achieved by using a reliable finite element a posteriori error estimator, which is also provided as input to the neural network. The proposed U-Net architecture with CNN layers mimics a classical finite element multigrid algorithm. It can be shown that the CNN efficiently approximates all operations required by the solver, including the evaluation of the residual-based error estimator. In the CNN, a culling mask set-up according to the local corrections due to refinement on each mesh level reduces the overall complexity, allowing the network optimization with localized fine-scale finite element data. A complete convergence and complexity analysis is carried out for the adaptive multilevel scheme, which differs in several aspects from previous non-adaptive multilevel CNN. Moreover, numerical experiments with common benchmark problems from Uncertainty Quantification illustrate the practical performance of the architecture.
- Abstract(参考訳): ニューラルネットワークアーキテクチャは,高次元パラメータ依存偏微分方程式の多値性を利用して,パラメータ対解写像の効率的な近似を可能にする。
ニューラルネットワークは適応的に洗練された有限要素メッシュのデータで訓練されるため、データの複雑さは大幅に減少する。
ニューラルネットワークへの入力としても提供される、信頼性のある有限要素の後部誤差推定器を使用することで、エラー制御を実現する。
CNN層を用いたU-Netアーキテクチャは、古典的有限要素乗算アルゴリズムを模倣する。
CNNは、残差に基づく誤差推定器の評価を含む、解決者に必要な全ての操作を効率的に近似することを示すことができる。
CNNでは、メッシュレベルでの洗練による局所的な修正によるカリングマスクのセットアップにより、全体的な複雑さが低減され、局所化された微細な有限要素データによるネットワーク最適化が可能となる。
適応型マルチレベルスキームの完全収束と複雑性解析は,従来の非適応型マルチレベルCNNといくつかの点で異なる。
さらに、不確実性定量化による一般的なベンチマーク問題による数値実験は、アーキテクチャの実用的な性能を示している。
関連論文リスト
- Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation [0.0]
ニューラルネットワークアーキテクチャは高次元パラメータ依存偏微分方程式(pPDE)を解くために提示される
モデルデータのパラメータを対応する有限要素解にマッピングするために構築される。
適応有限要素法(AFEM)で生成される粗いグリッド解と一連の補正を出力する。
論文 参考訳(メタデータ) (2024-03-19T11:34:40Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Performance and accuracy assessments of an incompressible fluid solver
coupled with a deep Convolutional Neural Network [0.0]
ポアソン方程式の解法は、通常、非圧縮性流体解法における最も計算集約的なステップの1つである。
CNNはこの方程式を解くために導入され、推論時間を大幅に短縮した。
CNNと従来の反復解法を結合してユーザ定義の精度を保証するハイブリッド戦略が開発されている。
論文 参考訳(メタデータ) (2021-09-20T08:30:29Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - Neural Spectrahedra and Semidefinite Lifts: Global Convex Optimization
of Polynomial Activation Neural Networks in Fully Polynomial-Time [31.94590517036704]
2次活性化を持つ2層数値ネットワークの完全凸最適化定式化を考案する。
本研究では,全入力データの複雑度とサンプルサイズが半定常的なニューラル・グローバル最適化であることを示した。
提案手法は, 標準バックプロパゲーション法に比べ, テスト精度が大幅に向上した。
論文 参考訳(メタデータ) (2021-01-07T08:43:01Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
我々は,CNNにおいて,畳み込みカーネル間の構造正則化を導入する。
我々はCNNがパラメータや計算量を劇的に減らして性能を維持していることを示す。
論文 参考訳(メタデータ) (2020-09-04T20:41:47Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
本稿では、予測精度とネットワーク複雑性を2つの個別目的関数として扱うことにより、ニューラルネットワークのトレーニングに関する多目的視点を提案する。
模範的畳み込みニューラルネットワークの予備的な数値結果から、ニューラルネットワークの複雑性の大幅な低減と精度の低下が可能であることが確認された。
論文 参考訳(メタデータ) (2020-08-31T13:28:03Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。