論文の概要: Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering
- arxiv url: http://arxiv.org/abs/2206.02027v1
- Date: Sat, 4 Jun 2022 17:16:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 17:11:56.206502
- Title: Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering
- Title(参考訳): メッシュフリー逆障害物散乱のための入射神経表現法
- Authors: Tin Vla\v{s}i\'c, Hieu Nguyen, Ivan Dokmani\'c
- Abstract要約: 多層パーセプトロンのレベルセットとしての形状のインプシット表現は、最近、形状解析、圧縮、再構成タスクで栄えている。
メッシュフリーで逆障害物散乱問題を解決するための暗黙的ニューラルネットワーク表現に基づくフレームワークを提案する。
- 参考スコア(独自算出の注目度): 21.459567997723376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit representation of shapes as level sets of multilayer perceptrons has
recently flourished in different shape analysis, compression, and
reconstruction tasks. In this paper, we introduce an implicit neural
representation-based framework for solving the inverse obstacle scattering
problem in a mesh-free fashion. We efficiently express the obstacle shape as
the zero-level set of a signed distance function which is implicitly determined
by a small number of network parameters. To solve the direct scattering
problem, we implement the implicit boundary integral method. It uses
projections of the grid points in the tubular neighborhood onto the boundary to
compute the PDE solution instead of a grid-size-dependent extraction method of
surface points such as Marching Cubes. The implicit representation conveniently
handles the shape perturbation in the optimization process. To update the
shape, we use PyTorch's automatic differentiation to backpropagate the loss
function w.r.t. the network parameters, allowing us to avoid complex and
error-prone manual derivation of the shape derivative. The proposed framework
makes the inverse scattering problem more tractable with fewer parameters to
optimize in comparison to the memory-inefficient grid-based approaches and
outputs high-quality reconstruction results.
- Abstract(参考訳): 多層パーセプトロンのレベルセットとしての形状のインプシット表現は、最近、形状解析、圧縮、再構成タスクで栄えている。
本稿では,メッシュフリーで逆障害物散乱問題を解決する暗黙のニューラルネットワーク表現に基づくフレームワークを提案する。
少数のネットワークパラメータによって暗黙的に決定される符号付き距離関数のゼロレベル集合として障害物形状を効率的に表現する。
直接散乱問題を解決するために,暗黙境界積分法を実装した。
管状近傍の格子点を境界上に投影してpde解を計算し、マーチングキューブのような表面点の格子サイズ依存抽出法の代わりにpde解を計算する。
暗黙表現は最適化過程における形状摂動を便利に扱う。
形状を更新するために、PyTorchの自動微分を用いて損失関数w.r.t.をネットワークパラメータとしてバックプロパゲートし、形状微分の複雑でエラーを起こしやすい手動導出を避ける。
提案フレームワークは,メモリ非効率なグリッドベース手法と比較して,逆散乱問題を少ないパラメータでより抽出し,高品質な再構成結果を出力する。
関連論文リスト
- A neural network approach for solving the Monge-Ampère equation with transport boundary condition [0.0]
本稿では,輸送境界条件でモンジュ・アンペア方程式を解くためのニューラルネットワークに基づく新しい手法を提案する。
我々は、方程式の残差、境界条件、凸性制約を含む損失関数を最小化することにより、多層パーセプトロンネットワークを利用して近似解を学習する。
論文 参考訳(メタデータ) (2024-10-25T11:54:00Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation [0.0]
ニューラルネットワークアーキテクチャは高次元パラメータ依存偏微分方程式(pPDE)を解くために提示される
モデルデータのパラメータを対応する有限要素解にマッピングするために構築される。
適応有限要素法(AFEM)で生成される粗いグリッド解と一連の補正を出力する。
論文 参考訳(メタデータ) (2024-03-19T11:34:40Z) - Multilevel CNNs for Parametric PDEs [0.0]
偏微分方程式に対する多段階解法の概念とニューラルネットワークに基づくディープラーニングを組み合わせる。
より詳細な理論的解析により,提案アーキテクチャは乗算Vサイクルを任意の精度で近似できることを示した。
最先端のディープラーニングベースの解法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-01T21:11:05Z) - Towards a machine learning pipeline in reduced order modelling for
inverse problems: neural networks for boundary parametrization,
dimensionality reduction and solution manifold approximation [0.0]
逆問題、特に偏微分方程式の文脈では、膨大な計算負荷を必要とする。
ニューラルネットワークを用いた数値パイプラインを用いて,問題の境界条件のパラメータ化を行う。
これは、インレット境界のアドホックなパラメトリゼーションを提供することができ、迅速に最適解に収束する一般的な枠組みに由来する。
論文 参考訳(メタデータ) (2022-10-26T14:53:07Z) - Shape As Points: A Differentiable Poisson Solver [118.12466580918172]
本稿では,ポアソン表面再構成 (PSR) の微分可能な定式化を用いた,微分可能な点間メッシュ層を提案する。
微分可能なPSR層は、暗示指標場を介して、明示的な3D点表現を3Dメッシュに効率よく、かつ、差別的にブリッジすることができる。
ニューラル暗黙の表現と比較して、私たちのシェープ・アズ・ポイント(SAP)モデルはより解釈可能で、軽量で、1桁の推論時間を加速します。
論文 参考訳(メタデータ) (2021-06-07T09:28:38Z) - De-homogenization using Convolutional Neural Networks [1.0323063834827415]
本稿では,構造コンプライアンス最小化のための深層学習に基づく非均質化手法を提案する。
パラメータの適切な選択のために、非均質化設計は、均質化に基づく解の7-25%以内で実行される。
論文 参考訳(メタデータ) (2021-05-10T09:50:06Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
スパースサンプリングされた場所のみの機能を計算することを提案する。
次に、効率的な手順で特徴写像を密に再構築する。
提案したネットワークは、様々なコンピュータビジョンタスクの精度を維持しながら、かなりの計算を省くために実験的に示されている。
論文 参考訳(メタデータ) (2020-03-19T15:36:31Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。