論文の概要: NTopo: Mesh-free Topology Optimization using Implicit Neural
Representations
- arxiv url: http://arxiv.org/abs/2102.10782v1
- Date: Mon, 22 Feb 2021 05:25:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 14:50:26.526176
- Title: NTopo: Mesh-free Topology Optimization using Implicit Neural
Representations
- Title(参考訳): NTopo:暗黙のニューラル表現を用いたメッシュフリートポロジー最適化
- Authors: Jonas Zehnder, Yue Li, Stelian Coros, Bernhard Thomaszewski
- Abstract要約: トポロジ最適化問題に対処する新しい機械学習手法を提案する。
我々は多層パーセプトロン(MLP)を用いて密度場と変位場の両方をパラメータ化する。
実験を通じて示すように、私たちのアプローチの大きな利点は、継続的ソリューション空間の自己教師付き学習を可能にすることです。
- 参考スコア(独自算出の注目度): 35.07884509198916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in implicit neural representations show great promise when it
comes to generating numerical solutions to partial differential equations
(PDEs). Compared to conventional alternatives, such representations employ
parameterized neural networks to define, in a mesh-free manner, signals that
are highly-detailed, continuous, and fully differentiable. Most prior works aim
to exploit these benefits in order to solve PDE-governed forward problems, or
associated inverse problems that are defined by a small number of parameters.
In this work, we present a novel machine learning approach to tackle topology
optimization (TO) problems. Topology optimization refers to an important class
of inverse problems that typically feature very high-dimensional parameter
spaces and objective landscapes which are highly non-linear. To effectively
leverage neural representations in the context of TO problems, we use
multilayer perceptrons (MLPs) to parameterize both density and displacement
fields. Using sensitivity analysis with a moving mean squared error, we show
that our formulation can be used to efficiently minimize traditional structural
compliance objectives. As we show through our experiments, a major benefit of
our approach is that it enables self-supervised learning of continuous solution
spaces to topology optimization problems.
- Abstract(参考訳): 近年の暗黙的な神経表現の進歩は、偏微分方程式(PDE)に対する数値解を生成する際に大きな期待を示す。
従来の代替法と比較して、そのような表現はパラメータ化されたニューラルネットワークを使用して、メッシュのない方法で、高度に詳細で連続的で、完全に微分可能な信号を定義する。
多くの先行研究は、PDEが支配する前方問題や、少数のパラメータによって定義される関連する逆問題を解決するためにこれらの利点を活用することを目的としている。
本研究では,トポロジ最適化(TO)問題に取り組むための新しい機械学習手法を提案する。
位相最適化は、通常非常に高次元のパラメータ空間と非常に非線形な客観的景観を特徴とする逆問題の重要なクラスを指す。
TO問題における神経表現を効果的に活用するために,多層パーセプトロン(MLP)を用いて密度場と変位場の両方をパラメータ化する。
移動平均二乗誤差を伴う感度解析を用いて,従来の構造適合目標を効率的に最小化できることを示す。
実験を通じて示すように、我々のアプローチの大きな利点は、連続的なソリューション空間の自己教師付き学習をトポロジ最適化問題に適用できることです。
関連論文リスト
- WANCO: Weak Adversarial Networks for Constrained Optimization problems [5.257895611010853]
まず、拡張ラグランジアン法を用いてミニマックス問題をミニマックス問題に変換する。
次に、それぞれ原始変数と双対変数を表すために、2つの(または複数の)ディープニューラルネットワークを使用します。
ニューラルネットワークのパラメータは、敵のプロセスによって訓練される。
論文 参考訳(メタデータ) (2024-07-04T05:37:48Z) - Neural Parameter Regression for Explicit Representations of PDE Solution Operators [22.355460388065964]
偏微分方程式(PDE)の解演算子を学習するための新しいフレームワークであるニューラル回帰(NPR)を導入する。
NPRは、ニューラルネットワーク(NN)パラメータを回帰するために、Physics-Informed Neural Network (PINN, Raissi et al., 2021) 技術を使用している。
このフレームワークは、新しい初期条件と境界条件に顕著な適応性を示し、高速な微調整と推論を可能にした。
論文 参考訳(メタデータ) (2024-03-19T14:30:56Z) - Dynamically configured physics-informed neural network in topology
optimization applications [4.403140515138818]
物理インフォームドニューラルネットワーク(PINN)は、前方問題を解決する際に大量のデータを生成するのを避けることができる。
動的に構成された PINN-based Topology Optimization (DCPINN-TO) 法を提案する。
変位予測と最適化結果の精度は,DCPINN-TO法が効率的かつ効率的であることを示している。
論文 参考訳(メタデータ) (2023-12-12T05:35:30Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
パラメーター対解写像の効率的な近似法として,Deep Neural Networks に基づく構築的アプローチを開発した。
特に, パラメタライズド・アドベクション拡散PDEについて検討し, 強輸送場の存在下で方法論を検証した。
論文 参考訳(メタデータ) (2021-03-10T17:01:42Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks [20.44438519046223]
広域ニューラルネットワークがPL$*$条件を満たすことを示し、(S)GD収束を大域最小値に説明する。
広域ニューラルネットワークがPL$*$条件を満たすことを示し、(S)GD収束を大域最小値に説明する。
論文 参考訳(メタデータ) (2020-02-29T17:18:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。